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Summary 
This report presents the development of a likelihood ratio test for synchronous and 
balanced CDMA signals. The hypothesis associated with a binary test is the code length 
and number of user.  The approach incorporates a statistical dependency of the 
spreading matrix elements when computing the expectation over the spreading matrix 
elements. The dependency is a discrete Gaussian probability function that depends on 
a modified Total Square Correlation.  The resulting average likelihood is a product of 
terms that depends on the matrix that achieves the lowest Total Square Correlation.  If 
the set of signals is constrained to Hadamard matrices using Sylvester’s construction, 
the likelihood function can be simplified further, allowing the classification over code 
lengths in the range of 22 to 213 and possibly higher. 

Keywords: DS/CDMA signals, classification, balanced CDMA load, synchronous CDMA, 
decision theory, average likelihood ratio test, Total Square Correlation 
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1. Introduction
Modulation classification is an important step in the characterization of signals and 
the recovery of the information content.  In a non-cooperative scenario, an 
eavesdropper attempts to gain information on how the signal has been 
synchronized and modulated before trying to recover the information content.  A 
second scenario could be the case of a smart receiver with software defined radio 
that reconfigures itself for various modulation types, managing the allocation of 
users and adjusting the code length for efficient utilization of the bandwidth. 

The problem of signal classification has been widely studied for MPSK and QAM 
signals using a decision theoretic approach.  Surprisingly there is a lack of research 
on the area of classifying CDMA signals using average likelihood methods. [1] 

Traditional approaches for signal classification include heuristics, feature-based 
classification and decision theory.  The development of decision theoretic 
approaches must result, by virtue of the theory, in an optimal classifier that 
guarantees the lowest probability of error in classification.  If there were such 
classifier that could perform better, then we would either omit an important piece of 
information in our assumptions or have discovered a novel approach that performs 
better than the current state of the art in the classification theory. The idea of 
developing average likelihood methods in CDMA sounds attractive because it could 
also result in better estimation methods.  In a future research, we would consider 
the ambitious goal of estimating the CDMA spreading matrix or even estimating the 
information contents (multi-user detection) without knowledge of the spreading 
matrix. 

The objective of this research is to develop a decision theoretic approach for 
modulation classification of CDMA signals.  This approach will be based on the 
classical average likelihood ratio test (ALRT).  We begin this classification problem 
by finding the size of the spreading matrix that generated the DS-CDMA signal.  As 
the number of unknown variables grows, the averaging process becomes an 
extremely complex task.  In the multiuser detection, a closely related problem, 
authors use Singular Value Decomposition (SVD) to estimate the unknown variables 
and do estimation based on a generalized likelihood approach. [2]  These 
approaches are suboptimal by nature. 

The benefits of the theory sound promising; however, there is a high risk due to the 
difficulty of averaging over a large number of parameters and obtaining an exact 
analytical solution.  During the first year of the research, the risk was mitigated by 
concentrating in the development an empirical likelihood function for CDMA. The 
understanding was possible by using symbol algebra software and attempting to 
solve simple cases of CDMA.  This knowledge was collected in a previous Interim 
Technical Report AFRL-RI-RS-TR-2013-058.  Most of the previous work was 
superseded by the research done during the second year. 
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In the second part of the research, an effort was made to improve and provide a 
mathematical foundation for deriving an empirical likelihood function found during 
the first year.  This includes extending the likelihood function to higher dimensions 
of the spreading matrix.  A cluster of 48 computers was used calculate the likelihood 
to code length dimensions 5 and 6. The work required translating an empirically 
derived Matlab code (see Appendix G) to a Multiple Programming Interface in C++.  
Unfortunately the resulting approach was computationally overwhelming for code 
lengths above 6.  However, the code length cases of 5 and 6 provided more evidence 
of the dependency of the likelihood on matrices that achieve the lowest Total Square 
Correlation.  At this point, it was clear that the average likelihood function for CDMA 
is a sum of products of two main terms, that is, some coefficients that depended on 
the Total Square Correlation and a product of hyperbolic cosine functions. This 
product came from an averaging of exponentials as shown in Appendix E.  But using 
this product would require partitioning the set of all possible combination of the 
spreading matrix in carefully selected subsets as shown in Appendix C.  Another 
interesting observation was made. Most of the coefficients of the likelihood function 
are negligible for computing the likelihood as shown in Figures 3 and 4.  This 
property reduced greatly the complexity of the average likelihood.  The final task 
was to provide experimental evidence that validates our development.  A 
classification using Receiver Operating Characteristic (ROC) curves revealed that 
the approach taken in this research was able to produce desirable results. 

This report presents a mathematical development of the CDMA average likelihood 
function. It is divided in the following parts: a review of existing techniques, a 
description of the model, the problem and assumptions, the formulation of the 
likelihood function and its simplification.  The metric of performance used in the 
simulations is the ROC curves which provide a visual characterization of the new 
classification rules. The results appear to support the validity of the newly 
generated classification rules. 

2. Theoretical Background
The classification of DS/CDMA signals should not be confused with the problem of 
multiuser detection.  The multiuser detection deals with the estimation of 
information symbols in a CDMA system.  This can be done in the absence of the code 
that generated the signal.  The different approaches try to gain information of the 
spreading matrix by using Singular Value Decomposition (SVD) methods.  A 
common metric is the bit error rate (BER). On the other hand, the goal of 
modulation classification is the selection of a modulation scheme over the others. 
The classifier can be characterized using Receiver Operating Characteristic (ROC) 
curves or by generating confusion matrices. 

As an estimation problem, the number of users or information symbols is obtained 
by maximizing a conditional likelihood function.  Common assumptions in this 
problem are the estimation under Additive White Gaussian Noise (AGWN) and the 
full synchronization of the CDMA signal. This includes frame, chip and phase 
synchronized system [3]. Maximizing the likelihood function is prohibitively 
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complex due to the large amount of unknown parameters that are required to be 
estimated. 

There is a lack of likelihood methods for modulation classification.  A survey on 
classification methods discusses only traditional modulation schemes such as MPSK 
and QPSK methods [4]. A more recent paper highlights the need for modulation 
classification [5], but none of the methods directly addresses the classification of 
CDMA signals. A feature based classification technique is shown presented in [6]. 
This approach classifies the signal by its code length. It uses cyclostationary features 
and a neural network for classification.  The method requires training and there is 
no guarantee of achieving an optimal performance. 

3. Synchronous, Balanced CDMA Average Likelihood
3.1 Model 

The goal is to classify CDMA signals by their code length 𝐿 and number of users 𝑈 in 
the presence of Additive White Gaussian Noise (AWGN). A CDMA signal �⃗� of size 
𝐿 × 1 (see Eq. 1) is generated by a spreading matrix 𝐶 of size 𝐿 × 𝑈, and the 
information symbol vector 𝑏�⃗  of size 𝑈 × 1. For simplicity, we assume that the signal 
the energy per symbol 𝐸 of each user is constant, i.e., a balanced load.  Developing 
the case of unbalanced load is possible, but not considered in this report due to time 
constraints. 

�⃗� = �𝐸/𝐿 ∙ 𝐶𝑏�⃗  
(1) 

The spreading matrix and the information vector are binary antipodal. The 
spreading matrix is a block matrix composed of column vectors 𝑐∗,𝑖 with low cross-
correlation. A metric that characterizes the spreading matrix is known as the Total 
Square Correlation (TSC).  A modified TSC is defined in this paper by [7] 

𝜏(𝐶) ≜ ���〈𝑐∗,𝑖, 𝑐∗,𝑗〉�
2

.
𝑈−1

𝑗=0
𝑗≠𝑖

𝑈−1

𝑖=0

(2) 

An alternative definition of [Eq. 2] for an antipodal matrix can be expressed in terms 
of the Frobenius Norm as: 

𝜏(𝐶) ≜ ‖𝐶𝑇𝐶‖𝐹2 − 𝐿 ∙ 𝑈. 
(3) 

The noise vector 𝑛�⃗  has zero mean, and covariance matrix Σ = 𝑁0/2 ∙ 𝐼, where 𝐼 is 
an 𝐿 × 𝐿 identity matrix. The receiver has no knowledge of the spreading code, the 
code length or the number of users. The channel is modeled by: 
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�⃗� = �⃗� + 𝑛�⃗ . 
(4) 

This model makes the following assumptions: chip synchronization and knowledge 
of the beginning of the sequence.  For simplicity, our approach will use similar 
assumptions to those used in multiuser detection, i.e., chip synchronization and 
frame synchronization.  The assumptions represent a scenario where the 
eavesdropper has information of the preamble and knows the beginning of the 
transmission. 

The conditional likelihood function is given by: 

𝜆��⃗�|ℋ = {𝐿,𝑈},𝐶, 𝑏�⃗ � =
1

(𝜋𝑁0)𝐿/2 𝑒
−(𝑦��⃗ −𝑥��⃗ )𝐻Σ−1(𝑦��⃗ −𝑥��⃗ )

2  

(5) 

The likelihood is conditioned on the hypothesis ℋ = {𝐿,𝑈}, the spreading matrix 𝐶, 
and the information vector 𝑏�⃗  according to (5). The likelihood has made the 
assumption of the code length 𝐿 and frame period.  The assumption must be tested 
against other possible assumptions in order to make a determination of the code 
length. 

The assumption of frame synchronization is not a critical restriction when 
constructing an average likelihood function. Additional averaging will be sufficient 
to remove the assumption. Once it is removed, it will represent a more realistic 
scenario where the eavesdropper does not know the beginning of the sequence. 

Under the assumption of no frame synchronization, our conditional likelihood is 
given by: 

𝜆��⃗�|ℋ = {𝐿,𝑈},𝐶, 𝑏�⃗ , 𝜖� =
1

(𝜋𝑁0)𝐿/2 𝑒
−(𝑦��⃗ 𝜖−𝑥��⃗ )𝐻Σ−1(𝑦��⃗ 𝜖−𝑥��⃗ )

2  

(6) 

where �⃗�𝜖 represents the received vector that is delayed 𝜖 chips. 

3.2 Average Likelihood Function 

The construction of our likelihood function will be expressed as a function of the 
energy per chip 𝐸𝑐𝑐 = 𝐸/𝐿 and noise power 𝑁0.  Equation (7) introduces new 
variables for convenience. These are the energy-to-noise ratio per chip 𝛾, the 
unnormalized signal 𝑠, and the correlator output 𝑟 respectively: 

𝛾 = 𝐸
𝑁0𝐿

,   𝑠 = 𝐶𝑏�⃗ ,  𝑟 = 𝑦�⃗
�𝑁0/2

. 

(7) 

The conditional likelihood function of (5) becomes: 
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𝜆�𝑟|ℋ,𝐶, 𝑏�⃗ � = �𝑒𝑒
−〈𝑟��⃗ ,𝑟��⃗ 〉

(𝜋𝑁0)𝐿�
1/2

𝑒�2𝛾〈𝑟,𝑠〉−𝛾〈𝑠,𝑠〉. 

(8) 

(See Appendix A)  Unlike the MPSK likelihood [1], all terms in (8) are kept because 
of their dependency on the hypothesis. 

Up to this point, the discussion has not added any new development.  The new 
contribution is contained in the following premise. The average of the conditional 
likelihood is an interesting case of dependency between the elements of the 
spreading matrix.  It is unlikely that a random selection of matrix elements would 
result in a low correlation matrix. Therefore, we must selectively choose the 
spreading matrices based on some code-design metric.  This approach constructs a 
Gaussian-like discrete probability distribution based on our definition of the TSC. 
The probability of choosing a suitable spreading matrix with low-correlation is 
given by: 

𝑃(𝐶) ≜ 𝑒𝑒−𝛽∙𝜏(𝐶)

∑ 𝑒𝑒−𝛽∙𝜏(𝐶)𝐴𝑙𝑙 𝑐𝑖,𝑗
. 

(9) 

For a perfectly uncorrelated code such as Walsh codes, the TSC metric is zero and 
the probability achieves a maximum value. This probability has multiple maxima. 
Any sign inversion or permutation of rows and column of matrix C must have the 
same TSC value and thus multiple maxima are expected. (See Appendix C) 

The parameter 𝛽 is called precision and it is half the inverse of the variance of this 
particular distribution. [8]  Consider 𝑝(ℋ) being the probability of a hypothesis ℋ. 
The detection of ℋ would depend on 𝑝(ℋ) integrated from a threshold 𝜂 to infinity. 
The resulting probability of detection as a function of 𝜂 is a sigmoid function called 
error function.  If 𝛽 is the precision of 𝑝(ℋ) and this variance is allowed going to 
infinity, then the slope of the sigmoid becomes steeper to a point when the 
probability of detection is either zero or one. This adjustment in precision results in 
a hard decision scheme.  Later on, we will investigate the case when the precision of 
this probability approaches to infinity.  Averaging over the code coefficients 
eliminates the dependency of the likelihood on the spreading matrix as follows: 

𝜆�𝑟|ℋ, 𝑏�⃗ � = �𝑒𝑒
−〈𝑟��⃗ ,𝑟��⃗ 〉

(𝜋𝑁0)𝐿�
1/2

∑ 𝑃(𝐶)𝐴𝑙𝑙 𝑐𝑐𝑖,𝑗 𝑒�2𝛾〈𝑟,𝑠〉−𝛾〈𝑠,𝑠〉.

(10) 

Finally, the dependency on 𝑏�⃗  is removed by averaging over uniformly distributed 
information symbols as given by: 
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𝜆(𝑟|ℋ) = �
𝑒−〈𝑟,𝑟〉

(𝜋𝑁0)𝐿�
1/2

�
1

2𝑈
𝐴𝑙𝑙 𝑏𝑏𝑗

� 𝑃(𝐶)
𝐴𝑙𝑙 𝑐𝑐𝑖,𝑗

𝑒�2𝛾〈𝑟,𝑠〉−𝛾〈𝑠,𝑠〉. 

(11) 

3.3 Simplification 

Averaging process for hypothesis ℋ = {2,2} has 8 unknown variables and produces 
28 = 64 exponential terms. In general, the number of possible combinations 
involved in the averaging process increases exponentially: 

2𝐿∙𝑈+𝑈. 
(12) 

For a 4x4 spreading code, the number of averaging computations is: 24²+4 = 220. 

The likelihood expression in (11) is difficult to solve analytically. One can represent 
the different combinations of information symbols 𝑏𝑗  and elements 𝑐𝑖,𝑗 using a 
decimal number representation that are converted into binary digits by (13). (See 
Appendix B) 

𝜆(𝑟|ℋ) = � 𝑃�𝑍(𝑚)� ∙ 𝜆�𝑟|ℋ,𝑍(𝑚), 1�⃗ �
2𝐿∙𝑈−1

𝑚=0

 

𝑒�2𝛾∑ 𝑅𝑒𝑒{𝑟𝑖}𝐿−1
𝑖=0 ∑ 𝑧𝑖,𝑗𝑈−1

𝑗=0 (𝑚)−𝛾∑ ∑ 〈𝑧∗,𝑖,𝑧∗,𝑗〉𝑈−1
𝑗=0 −𝛽∙𝑇𝑆𝐶(𝑍(𝑚))𝑈−1

𝑖=0

𝑍(𝑚) = {𝑧𝑖,𝑗}𝐿×𝑈 

𝑧𝑖,𝑗 = 𝑐𝑖,𝑗𝑏𝑗  

𝑧𝑖,𝑗(𝑚) = (−1)1+𝑚𝑜𝑑𝑑��
𝑚

2𝑗+𝑖∙𝑈
�,2� 

(13) 

However, additional simplification comes from exploiting the invariance properties 
of the TSC and energy of the CDMA signal to rows, columns and sign inversion 
transformations of the spreading matrix.  Using invariance transformations can be 
useful in simplifying generalized likelihood ratio. [8]  The space of possibilities of 
the 𝑍 matrix can be partitioned in two subsets 𝒮𝒮𝑎𝑎�⃗  and 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏 defined below. 

Definition 1: The subset 𝒮𝒮𝑎𝑎�⃗  is the subset of matrices 𝑌 = �𝑦𝑖,𝑗�
𝐿×𝑈

 and 𝑍 = �𝑧𝑖,𝑗�
𝐿×𝑈

that meet the following condition: 
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𝑎𝑖 = �� 𝑦𝑖,𝑗

𝑈−1

𝑗=0

� = �� 𝑧𝑖,𝑗

𝑈−1

𝑗=0

� 

Eq. 14  

Definition 2: 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏 is the subset of matrices 𝑌 = �𝑦𝑖,𝑗�
𝐿×𝑈

 and 𝑍 = �𝑧𝑖,𝑗�
𝐿×𝑈

 such that:

𝑎𝑖 = �� 𝑦𝑖,𝑗

𝑈−1

𝑗=0

� = �� 𝑧𝑖,𝑗

𝑈−1

𝑗=0

� 

𝑇𝑆𝐶(𝑌) = 𝑇𝑆𝐶(𝑍) = 𝜏 

(15) 

The set 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏 is a subset of 𝒮𝒮𝑎𝑎�⃗  by definition.  The TST and energy are invariant under 
row/column permutations and row sign inversions. 

The subsets  𝒮𝒮𝑎𝑎�⃗  are disjoint sets of all possible combinations of the matrix C.  We can 
partition the each set  𝒮𝒮𝑎𝑎�⃗  in disjoint subsets 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏 as illustrated in Figures 1 and 2. 

Figure 1. Partition Using Sets 𝒮𝒮𝑎𝑎�⃗  Figure 2. Partition Using Subset 𝒮𝒮𝑏𝑏�⃗ ,𝜏𝜏 

Proposition 4: Let 𝑍 be a matrix subset 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏, 𝒫𝑐𝑐 a matrix permutation with binary 
elements {+1 or 0}, and 𝒫𝑠 a diagonal matrix that consists of ±1 entries. Then the 
transformation: 

𝑍′ = 𝒫𝑠 ∙ 𝑍 ∙ 𝒫𝑐𝑐 

(16) 

is also contained in the subset 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏. (See proof in Appendix C.) 

We reformulate (11) in terms of summation terms using Definitions 1 and 2 in (14) 
and (15) as follows: 

U 
 𝒮𝒮𝑎𝑎�⃗  

 𝒮𝒮𝑏𝑏�⃗  

 𝒮𝒮𝑐𝑐  

 𝒮𝒮�⃗�𝑑

 𝒮𝒮𝑒𝑒 

 𝒮𝒮𝑓𝑓 

 𝒮𝒮𝑏𝑏�⃗  
 𝒮𝒮𝑏𝑏�⃗ ,𝜏𝜏 

𝒮𝒮𝑏𝑏�⃗ ,𝜐𝜐  𝒮𝒮𝑏𝑏�⃗ ,𝜑𝜑
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𝜆(𝑟|ℋ) = � � � � 𝑃(𝑍) ∙ 𝜆�𝑟|ℋ,𝑍, 1�⃗ �
𝐴𝑙𝑙 𝒫𝑠 𝑍∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏𝐴𝑙𝑙 𝑎𝑎�⃗

. 

(17) 

It can be shown (see Appendices D and E) that the average likelihood becomes: 

𝜆(𝑟|ℋ) = � 𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽)�𝑒−𝛾∑ 𝑎𝑎𝑖
2𝑈−1

𝑗=0 cosh (�2𝛾 ∙ Re{𝑟𝑖} ∙ 𝑎𝑖)
𝐿−1

𝑖=0𝐴𝑙𝑙 𝑎𝑎�⃗

 

𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) =
2𝐿

2𝐶𝑜𝑢𝑛𝑡(𝑎𝑖=0) ∑ ∑ 𝑒−𝛽∙𝜏𝜏𝑍∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏

∑ 2𝐿

2𝐶𝑜𝑢𝑛𝑡(𝑎𝑖=0) ∑ ∑ 𝑒−𝛽∙𝜏𝜏𝑍∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏𝐴𝑙𝑙 𝑎𝑎�⃗

. 

(18) 

The likelihood function can be expressed as a product of cosh functions. The 
argument of each cosh function depends on the sum of the rows of matrix 𝑍. The 
determination of all the subsets 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏 introduces is extremely difficult because it 
requires fully characterizing 2𝐿⋅𝑈 spreading matrices in terms of  𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏. There is no 
analytical formula available for such characterization; however, studying the 
behavior of 𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) can lead us to find an alternative simplification. 

3.4 Exact Solution of a 2x2 Spreading Matrix 

The exact likelihood expression can be computed using Mathematica. A desktop 
computer can calculate the likelihood for code lengths 2 ≤ 𝐿 ≤ 4 as shown in 
Appendix F. Alternatively, we can compute 𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) using the Matlab code provided 
in Appendix G. 

The likelihood for a  2 × 2 spreading matrix hypothesis is given by: 

𝜆(𝑟|ℋ) = �
𝑒−〈𝑟,𝑟〉

(𝜋𝑁0)2�
1/2

�𝛼2,2,[0,0]𝑇 cosh(0 ∙ 𝑔0) cosh (0 ∙ 𝑔1) + 

𝛼2,2,[2,0]𝑇𝑒−4𝛾 cosh(2 ∙ 𝑔0) cosh(0 ∙ 𝑔1) + 

𝛼2,2,[0,2]𝑇𝑒−4𝛾 cosh(0 ∙ 𝑔0) cosh(2 ∙ 𝑔1) + 

𝛼2,2,[2,2]𝑇𝑒−8𝛾 cosh(2 ∙ 𝑔0) cosh (2 ∙ 𝑔1)� 
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where 

𝛼2,2,[0,0]𝑇 = 𝛼2,2,[2,2]𝑇 =
1
2

𝑧
1 + 𝑧

�
𝑧=𝑒𝑒−8𝛽

 

𝛼2,2,[2,0]𝑇 = 𝛼2,2,[0,2]𝑇 =
1
2

1
1 + 𝑧

�
𝑧=𝑒𝑒−8𝛽

 

𝑔𝑖 = �2𝛾 ∙ 𝑅𝑒{𝑟𝑖}. 

(19) 

 
The behavior of 𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) will be characterized in terms of infinite precision, i.e., 
lim𝛽→∞ 𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) . The convergence to zero provides an important simplification of 
(20). Several 𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) parameters have been calculated for code lengths up to 4 as 
shown in Appendix H. The parameters that converge to a non-zero value have been 
identified with an asterisk in the Appendix. 

Definition 3.  The vector �⃗�⋆ = [𝑎0, … ,𝑎𝐿−1] is a feature vector if 𝐶⋆ = �𝑐𝑖,𝑗�𝐿×𝑈
 is a 

spreading matrix that achieves the minimum TSC and: 

𝑎𝑖⋆ = �� 𝑐𝑖,𝑗⋆
𝑈−1

𝑗=0

� 

Property 5.  The limit of 𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) as 𝛽 approaches infinity depends on the feature 
vectors as follows: 

lim
𝛽→∞

𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) =

⎩
⎪
⎨

⎪
⎧0                                               𝑓𝑜𝑟 𝑎 ≠ �⃗�⋆

2𝐿

2𝐶𝑜𝑢𝑛𝑡(𝑎𝑖=0) � 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏𝑚𝑖𝑛�

∑ 2𝐿

2𝐶𝑜𝑢𝑛𝑡(𝑎𝑖=0) � 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏𝑚𝑖𝑛�𝐴𝑙𝑙 𝑎𝑎�⃗

  𝑓𝑜𝑟 𝑎 = �⃗�⋆
 

(20) 

 
The proof is shown in Appendix J. For 𝛽 → ∞, the 𝛼𝐿,𝑈,𝑣�⃗   parameter is just the ratio of 
the cardinality of our previously defined sets 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏 and 𝒮𝒮𝑎𝑎�⃗  multiplied by a constant. 
Increasing the precision is analogous to deriving a K-Means classifier from the 
Gaussian Mixture Models. [8]  Figures 3 and 4 show plots of 𝛼3,2,𝑎𝑎�⃗ (𝛽) in logarithmic 
scales. It can be appreciated that 𝛼3,2,𝑎𝑎�⃗ (𝛽) converges very rapidly for 𝛽 ≥ 1.  Similar 
observations were made for code length cases 2 ≤ 𝐿 ≤ 6.  (See Appendix I) For code 
length of higher length, we would have to make the assumption that these 
observations are also valid; otherwise, the 𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) coefficients would need to be 
calculated. This is already a computationally intractable problem. 
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For antipodal matrices, we provide the following empirical rule for computing the 
parameters 𝛼𝐿,𝑈,𝑎𝑎�⃗ .  First, we find any matrix 𝐶⋆ with minimum TSC. Then we 
multiply the matrix by all possible 2𝑈 choices of the vector 𝑏�⃗  and take the absolute 
value of each element of the resulting vector.  The result is a set of feature 
vectors �⃗�⋆. The limiting value of 𝛼𝐿,𝑈,𝑎𝑎�⃗  is the proportion of a given vector �⃗� in the set 
of 2𝑈  possibilities.  (See Appendix J) 

lim
𝛽→∞

𝛼𝐿,𝑈,𝑎𝑎�⃗ ⋆ (𝛽) =
𝑐𝑜𝑢𝑛𝑡(𝑎𝑏𝑠�𝐶⋆𝑏�⃗ � = �⃗�⋆)

2𝑈
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑏�⃗ . 

(21) 

 

 
 

Figure 3. Non Vanishing Coefficients for 3x3 Spreading Matrix 

  

Figure 4. Vanishing Coefficients for 3x3 Spreading Matrix 

In order to prove this assertion (21), we need to demonstrate that two antipodal 
matrices 𝐶1 and 𝐶2  with same minimum TST and different sum of rows are always 
related by rows and column permutations 𝐶1 = 𝒫1𝐶2 𝒫2.  This property is referred 
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as a Hadamard equivalence, but unfortunately it does not always hold. [10]  
Therefore, it would be necessary to find all possible 𝐶⋆ that are not equivalent or 
constrain our set to a specific construction. In our case, we will constrain our 
problem to the Sylvester’s Construction of the Hadamard matrix. The coding theory 
does not provide yet an answer for finding an expression of the lowest TSC matrices 
of an arbitrary size. 

3.5 Average Likelihood Function Example 

In this section we are going to summarize the steps needed for constructing the 
likelihood function given the hypothesis ℋ = {4,4}. 

Step 1: Find a matrix with minimum TSC 

This step is easy for Hadamard matrices with 𝐿 = 𝑈 = 2𝑘 . 

𝐶⋆ = �
1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

� 

Step 2: Generate the feature vectors using process described in [Eq. 21]: 

�⃗�1⋆ = [4,0,0,0]𝑇, 𝛼𝐿,𝑈,𝑎𝑎�⃗ 1⋆ = 2/24 = 1/8

�⃗�2⋆ = [2,2,2,2]𝑇 ,𝛼𝐿,𝑈,𝑎𝑎�⃗ 2⋆ = 8/24  = 1/2

Step 3: Form the product of hyperbolic cosine functions for the different 
permutations of the feature vectors. 

Permutations of �⃗�1⋆: 

[4,0,0,0]𝑇 , [0,4,0,0]𝑇 , [0,0,4,0]𝑇 , [0,0,0,4]𝑇 

For each one 𝛼𝐿,𝑈,𝑎𝑎�⃗ ⋆ = 2/24 = 1/8 

Permutations of �⃗�2⋆: 

[2,2,2,2]𝑇 

with 𝛼𝐿,𝑈,𝑎𝑎�⃗ ⋆ = 8/24 = 1/2 

Product of cosh functions: 

𝜆(𝑟|ℋ = {4,4}) = �
𝑒−〈𝑟,𝑟〉

(𝜋𝑁0)2�
1/2

�
1
8
�𝑒−42𝛾cosh (4 ∙ �2𝛾 ∙ 𝑅𝑒{𝑟𝑖})
3

𝑖=0

+ 

1
2
�𝑒−22𝛾cosh (2 ∙ �2𝛾 ∙ 𝑅𝑒{𝑟𝑖})
3

𝑖=0

� 
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As the code length and number of user grow, the average likelihood becomes 
complicated, but the complexity is much less than the original formulation found in 
(11).  The 220 unknown variables have been totally removed from the original 
expression. In the next section, the expression will be simplified by adding a 
constraint to the problem. 

3.6 ROC Using Simplified Likelihood 

Figures 5 through 14 show ROC curves for several simple cases of spreading codes. 
The length of the signal under test is expressed as the total number of chip. This 
value is based on selecting 5! ∙ 2 = 240 symbols of the hypothesis with the highest 
code length. If the code length is 2 (see Figure 5), length of the signal is 480 chips. 
The ROC curves are plotted for different SNR values. All of the simulations 
correspond to 𝛽 → ∞. Cases ℋ = {𝐿, 1} are trivial ones. Their likelihood ratio 
reduces to a constant when compared to a BPSK signal and it is impossible to 
classify them correctly as shown in Figure 6. 

Figure 5. ROC curves for ALRT Test 
𝓗𝟏 = {𝟐,𝟐} vs. 𝓗𝟎 = {𝟏,𝟏} 

 Figure 6. ROC curves for ALRT Test 
𝓗𝟏 = {𝟐,𝟏} vs. 𝓗𝟎 = {𝟏,𝟏} 

 Figure 7. ROC curves for ALRT Test 
𝓗𝟏 = {𝟑,𝟑} vs. 𝓗𝟎 = {𝟏,𝟏} 

 Figure 8. ROC curves for ALRT Test 
𝓗𝟏 = {𝟑,𝟑} vs. 𝓗𝟎 = {𝟐,𝟐} 
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Figure 9. ROC curves for ALRT Test 
𝓗𝟏 = {𝟑,𝟑} vs. 𝓗𝟎 = {𝟑,𝟐} 

Figure 10. ROC curves for ALRT Test  
𝓗𝟏 = {𝟑,𝟑} vs. 𝓗𝟎 = {𝟐,𝟐} 

Figure 11. ROC curves for ALRT Test  
𝓗𝟏 = {𝟒,𝟒} vs. 𝓗𝟎 = {𝟑,𝟑} 

Figure 12. ROC curves for ALRT Test  
𝓗𝟏 = {𝟒,𝟒} vs. 𝓗𝟎 = {𝟑,𝟐} 

Figure 13. ROC curves for ALRT Test  
𝓗𝟏 = {𝟒,𝟒} vs. 𝓗𝟎 = {𝟐,𝟐} Figure 14. ROC curves for ALRT Test  

𝓗𝟏 = {𝟒,𝟒} vs. 𝓗𝟎 = {𝟏,𝟏} 

The orange curves are extreme cases where the chip SNR is so low that the classifier 
starts breaking. As more noise is added to the signals, the ROC curves invert their 
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performance. A noisy CDMA signal under hypothesis null hypothesis ℋ0 will look 
like  ℋ1. This might be a result of numerical precision errors. 

The developed classifier is a hard decision scheme.  We have defined the joint 
probability of the spreading code in terms of 𝑃(𝐶), but we can also define the 
probability in terms of the TSC as 𝑃(𝜏|𝐶;𝛽).  As it is expected from hard decision 
classifiers, the probabilities becomes discrete instead of continuous: 𝑃(𝜏 =
𝜏𝑚𝑖𝑛|𝐶;𝛽) ≈ 1 and 𝑃(𝜏 ≠ 𝜏𝑚𝑖𝑛|𝐶;𝛽) ≈ 0. 

We might expect that codes with a slightly deviation from the minimum TSC 
spreading matrices would be detected and classified correctly.  The main 
parameters affecting the performance of the classifier are the parameter 𝛽 and the 
feature vector �⃗�⋆. If we refer to Figure 4, we can notice that for a small precision 
such as 𝛽 ≥ 1, the coefficients 𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) are already small enough to consider valid 
the approximation of Equation (20).  So, the parameter that mostly affects the 
performance of the classifier must be the parameter vector.  If two codes has similar 
parameter vector, then the classifier rule should also work.  This is only an 
assessment.  Future work must consider the scenario of small deviations from the 
minimum TSC codes. 

3.7 Classification of CDMA Signals based on Sylvester’s Construction 

We consider the simplified hypothesis ℋ = {𝐿, 𝐿} using the Sylvester’s Construction 
of the Hadamard matrix.  

Definition 4:  A Hadamard matrix 𝐻 is a 𝐿 × 𝐿  matrix of elements ±1 that satisfies 
the following condition [11]: 

𝐻𝑇𝐻 = 𝐿 ∙ 𝐼𝐿 

(22) 

 
𝐼𝐿 is an 𝐿 × 𝐿 identity matrix. 

Definition 5:  The Sylvester’s Construction of the Hadamard matrix is given by the 
following recursive formula using the Kronecker product [10]: 

𝐻2 = �+1 +1
+1 −1� 

𝐻2𝑘 = 𝐻2⨂𝐻2𝑘−1  

(23) 

Hadamard matrices have been a subject of study of mathematicians for years. There 
exists several constructions known at the present time; however, there is no 
theorem that proves the existence for any arbitrary code length [8]. 
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It is possible to generate distinct Hadamard matrices using the Kronecker product of 
two Hadamard matrices. 

Theorem 2: The Total Squared Correlation of a matrix generated from a Kronecker 
product is given by: [12] 

𝑇𝑆𝐶(𝐻𝑎𝑎⨂𝐻𝑏𝑏) = 𝑇𝑆𝐶(𝐻𝑎𝑎)𝑇𝑆𝐶(𝐻𝑏𝑏) + 𝐿𝑎𝑎𝑈𝑎𝑎𝑇𝑆𝐶(𝐻𝑏𝑏) + 𝐿𝑏𝑏𝑈𝑏𝑏𝑇𝑆𝐶(𝐻𝑎𝑎) 

(24) 

 
Corollary 2-1: The Kronecker product of two Hadamard matrices is another 
Hadamard matrix. 

For a Hadamard matrix the TSC is zero based on Equation (3).  The expression in 
(24) is zero under the Kronecker product of two Hadamard matrices. 

Corollary 2-2:  The Total Square Correlation of a Hadamard matrix is zero. 

Unfortunately the Kronecker product of two minimum TSC matrices does not 
necessarily produce a matrix with minimum TSC unless both matrices are 
Hadamard. 

The feature vector corresponding to a Sylvester’s Construction is given by: 

𝜉⋆ = [𝜉0 = 𝐿, 𝜉1 = 0, … , 𝜉𝐿−1 = 0]𝑇 

(25) 

 
as well as the 𝐿 possible row permutations of the feature vector 𝜉⋆. This is a fact 
known from the Sylvester’s Construction Hadamard Matrix. 

By restricting our set  𝒮𝒮𝑎𝑎�⃗ ⋆,0 to  𝒮𝒮𝜉�⃗ ⋆,0 we eliminate other constructions of Hadamard 
matrices by having setting our ratio to be one: 

lim
𝛽→∞

𝛼𝐿,𝑈,𝜉�⃗ ⋆ (𝛽) =
2𝐿

2𝐶𝑜𝑢𝑛𝑡(𝜉𝑖=0) � 𝒮𝒮𝜉�⃗ ⋆,0�
2𝐿

2𝐶𝑜𝑢𝑛𝑡(𝜉𝑖=0) � 𝒮𝒮𝜉�⃗ ⋆,0�
= 1 

(26) 

 
The average likelihood function of such scheme reduces to the following expression: 
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𝜆(𝑟|ℋ = 𝐻𝐿) = �
𝑒−〈𝑟,𝑟〉

(𝜋𝑁0)𝐿�

1
2

� �𝑒−𝛾|𝜉𝑖|2 cosh��2𝛾 ∙ 𝜉𝑖 ∙ 𝑅𝑒{𝑟𝑖}�
𝐿−1

𝑖=0𝐴𝑙𝑙
𝑃𝑒𝑒𝑟𝑚𝑢𝑡𝑎𝑎𝑡𝑖𝑜𝑛𝑠

 𝑜𝑓𝑓 𝜉�⃗ ⋆ 𝑒𝑒𝑙𝑒𝑒𝑚𝑒𝑒𝑛𝑡𝑠 

. 

(27) 

 
For the case 𝐿 = 1, the expression reduces to the average likelihood function of a 
BPSK signal found in [1]. 

The construction of the likelihood ratio between hypotheses ℋ2𝐿 = 𝐻2𝐿 and 
ℋ𝐿 = 𝐻𝐿  provides additional simplification. (See Appendix K) For every 
vector 𝑟2𝐿×1  in ℋ2𝐿 there are two vectors 𝑟𝐿×1 in ℋ𝐿 . The two vectors are 
statistically independent, so the likelihood in the denominator is multiplied. The 
terms 𝑒−〈𝑟,𝑟〉 containing the energy of the vectors 𝑟2𝐿×1  and 𝑟𝐿×1  are cancelled. The 
final form is given by: 

𝜆(𝑟|ℋ2𝐿)
𝜆(𝑟|ℋ𝐿) =

∑ cosh (�2𝛾 ∙ 2𝐿 ∙ 𝑅𝑒{𝑟𝑘})2𝐿
𝑘=0

∑ cosh (�2𝛾 ∙ 𝐿 ∙ 𝑅𝑒{𝑟𝑘})𝐿
𝑘=0 ∙ ∑  cosh (�2𝛾 ∙ 𝐿 ∙ 𝑅𝑒{𝑟𝑘})2𝐿

𝑘=𝐿+1
 

 
(28) 

 

Using the double angle formulas for cosh functions helps reducing the amount of 
calculations by reusing the terms in the denominator. 

Λ2𝐿(𝑟) =
𝜆(𝑟|ℋ2𝐿)
𝜆(𝑟|ℋ𝐿) =

∑ (2𝑑𝑘2 − 1)2𝐿
𝑘=0

∑ 𝑑𝑘𝐿
𝑘=0 ∙ ∑ 𝑑𝑘2𝐿

𝑘=𝐿+1
 

 
𝑑𝑘 =  cosh (�2𝛾 ∙ 𝐿 ∙ 𝑅𝑒{𝑟𝑘}) 

 
(29) 

 

The product of cosh functions can cause numerical overflow in the computations. 
The likelihood ratio shown in the previous equation offers better numerical 
stability. Nevertheless, this simplification implies that full Hadamard CDMA signals 
have easily implementable rules and can be easily detected. 

4. Results 
The ratio test in (28) allows computing the likelihood ratio for matrices of higher 
code length with low complexity.  The Figures 15 through 26 show the likelihood 
ratio calculated for two sets. The length of the signal under test is expressed as the 
total number of chip. This value is based on selecting 5! ∙ 2 = 240 symbols of the 
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hypothesis with the highest code length. If the code length is 2 (see Figure 15), 
length of the signal is 480 chips. 

 

 
Figure 15. ROC Curves 
Hadamard 4 versus 2 

 
Figure 16. ROC Curves 
Hadamard 8 versus 4 

 

 
Figure 17. ROC Curves 
Hadamard 16 versus 8 

 
Figure 18. ROC Curves 

Hadamard 32 versus 16 

 

 
Figure 19. ROC Curves 

Hadamard 64 versus 32 

 
Figure 20. ROC Curves 

Hadamard 128 versus 64 
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Figure 21. ROC Curves 

Hadamard 256 versus 128 

 
Figure 22. ROC Curves 

Hadamard 512 versus 256 

 

 
Figure 23. ROC Curves 

Hadamard 1024 versus 512 

 
Figure 24. ROC Curves 

Hadamard 2048 versus 1024 

 

 
Figure 25. ROC Curves 

Hadamard 4096 versus 2048 

 
Figure 26. ROC Curves 

Hadamard 8192 versus 4096 

 

The chip-level SNR appears to be extremely low.  First, we note that the chip-level 
SNR is a quantity defined for convenience and can be expressed in terms of a more 
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meaningful quantity: the symbol-level SNR.  The symbol-level SNR is the energy to 
noise power density ratio of one symbol: 

𝛾𝑠 =
𝐸
𝑁0

= 𝛾 ∙ 𝐿. 

 
𝑑𝐵(𝛾𝑠) = 𝑑𝐵(𝛾𝑐𝑐) + 3.01 ∙ 𝑘. 

(30) 

The symbol SNR equals the chip SNR plus 3 dB times the code length 𝐿 of the 
Hadamard matrix.  The symbol SNR should not be confused with the total SNR of the 
CDMA signal. 

The low SNR can be explained by understanding the process of generating a CDMA 
signal. When a full load CDMA signal is constructed, there is a probability 𝑝𝑠𝑝𝑖𝑘𝑒𝑒 for 
finding one single spike of magnitude 𝐿 and energy 𝐿2 within a frame of 𝐿 − 1 zeros.  
The signal classifier can be interpreted as a detector of spikes with probability 𝑝𝑠𝑝𝑖𝑘𝑒𝑒 
equals to Equation (21). 

 

5. Conclusions 

1. This research demonstrated that is possible to construct a classifier for the 
detection of full-loaded CDMA signals.  

2. The simplest CDMA classifier is a hard decision classifier that only considers 
the matrix that achieves the lowest Total Squared Correlation for a given 
code length. 

3. Further simplification of the likelihood equations can be made if a particular 
construction of the spreading code is assumed. Such is the case of Sylvester’s 
construction of Hadamard matrices. 
 

This approach defines the probability of a low correlation matrix and uses this 
definition for averaging over all possible spreading matrices. The resulting 
likelihood is a sum of the product of two terms as shown in (18). The first term 
depends on the Total Square Correlation and a parameter 𝛽 and the second term 
depends on the feature vectors  �⃗�⋆.  The first term acts like a filter that dampers the 
effect of many of the products of cosh functions. After dropping the insignificant 
terms, the expression terms depend exclusively on the spreading matrix that 
achieves the minimum Total Square Correlation. 
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The detection of Hadamard matrices generated using the Sylvester’s Construction 
adds more simplification to the likelihood function. The sum of the product of cosh 
functions reduces to only one summation as shown in (29). Although the expression 
is in a simple form, numerical overflow is a concern for any implementation of the 
likelihood function using large code lengths. 

6. Future Work 
The case of balanced CDMA signal, i.e., equal energy signals provides a limited 
application of the theory. The next step in this research will be the assumption of 
different energy levels for each signature vector.  Also, the case of QPSK CDMA will 
be investigated. Preliminary research has shown that it is possible to develop 
similar equations in terms of the product of cosh functions and feature vectors. 
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APPENDIX A. Likelihood Form 
 

We define the following variables: 

 

Signal to noise ratio per 
chip 𝛾𝑐𝑐 =

𝐸
𝑁0𝐿

, 

Unnormalized signal 𝑠 = 𝐶 ∙ 𝑏�⃗  

 

CDMA transmit signal �⃗� = �𝐸/𝐿 𝑠 

 

Output of the correlator 
𝑟 =

�⃗�
�𝑁0/2

. 

 

Then, we proceed to substitute them in the likelihood function: 

𝜆��⃗�|ℋ = {𝐿,𝑈},𝐶, 𝑏�⃗ � =
1

(𝜋𝑁0)𝐿/2 𝑒
−(𝑦��⃗ −𝑥��⃗ )𝐻Σ−1(𝑦��⃗ −𝑥��⃗ )

2  

𝜆��⃗�|ℋ = {𝐿,𝑈},𝐶, 𝑏�⃗ � =
1

(𝜋𝑁0)𝐿/2 𝑒
−
��𝑁02 𝑟��⃗ −�𝐸/𝐿 𝐶𝑏��⃗ �

𝐻
��𝑁02 𝑟��⃗ −�𝐸/𝐿 𝐶𝑏��⃗ �

2𝑁0/2  

𝜆��⃗�|ℋ = {𝐿,𝑈},𝐶, 𝑏�⃗ � =
1

(𝜋𝑁0)𝐿/2 𝑒
−𝑁02 𝑟��⃗ 𝐻𝑟��⃗ +2�𝐸𝐿𝑅𝑒��𝑁0/2 𝑟��⃗ 𝐻𝐶𝑏��⃗ �−𝐸𝐿�𝐶Υ𝑏

��⃗ �
𝐻
𝐶𝑏��⃗

𝑁0  

 

𝜆��⃗�|ℋ = {𝐿,𝑈},𝐶, 𝑏�⃗ � =
1

(𝜋𝑁0)𝐿/2 𝑒
−𝑟��⃗

𝐻𝑟��⃗
2 +�2𝛾𝑅𝑒𝑒�𝑟𝐻�𝐶𝑏𝑏�⃗ −𝛾�𝐶𝑏𝑏�⃗ �

𝐻
𝐶𝑏𝑏�⃗  

The final result is: 

𝜆��⃗�|ℋ = {𝐿,𝑈},𝐶, 𝑏�⃗ � = �𝑒𝑒
−〈𝑟��⃗ ,𝑟��⃗ 〉

(𝜋𝑁0)𝐿�
1/2

𝑒�2𝛾𝑅𝑒𝑒�𝑟𝐻�𝐶𝑏𝑏�⃗ −𝛾�𝐶𝑏𝑏�⃗ �
𝐻
𝐶𝑏𝑏�⃗ . 
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APPENDIX B. Average Likelihood Function 
 

Consider the base 2 and decimal representation of  𝑏�⃗  and 𝐶 combinations as follows: 

𝑛10 = (𝐵𝑈−1, … ,𝐵1,𝐵0)2 

𝑚10 = (𝐶𝐿∙𝑈−1, … ,𝐶1,𝐶0)2. 

The multiple summations over binary symbols 𝑏𝑗  and 𝑐𝑖,𝑗 can be implemented with a 
summation of the decimal indexes 𝑛 and 𝑚 respectively: 

𝑏𝑗(𝑛) = (−1)1+𝑚𝑜𝑑𝑑��
𝑛
2𝑗
�,2� 

𝑐𝑖,𝑗(𝑚) = (−1)1+𝑚𝑜𝑑𝑑��
𝑚

2𝑗+𝑈∙𝑖
�,2� 

𝜆(𝑟|ℋ) = �
1

2𝑈
� 𝑃�𝐶(𝑚)� ∙ 𝜆(𝑟|ℋ,𝐶(𝑚),𝑏(𝑛))
2𝑈−1

𝑛=0

2𝐿∙𝑈−1

𝑚=0  

A new variable 𝑧𝑖,𝑗  equivalent to the product 𝑏𝑗  and 𝑐𝑖,𝑗 eliminates the need of one 
summation. 

𝑧𝑖,𝑗(𝑝) = 𝑐𝑖,𝑗 ∙ 𝑏𝑗 = (−1)1+𝑚𝑜𝑑𝑑��
𝑝

2𝑗+𝑖∙𝑈
�,2�

 
The likelihood reduces to: 

𝜆(𝑟|ℋ) = � 𝑃�𝑍(𝑚)� ∙ 𝜆�𝑟|ℋ,𝑍(𝑚), 1�⃗ �
2𝐿∙𝑈−1

𝑀=0  

where: 

𝜆�𝑟|ℋ,𝑍(𝑚), 1�⃗ � = 𝑒�2𝛾∑ 𝑟𝑖𝐿−1
𝑖=0 ∑ 𝑧𝑖,𝑗𝑈−1

𝑗=0 (𝑚)−𝛾∑ 〈𝑧∗,𝑗(𝑚),𝑧∗,𝑗(𝑚)〉−𝛽∙𝜏𝜏(𝑍(𝑚))𝑈−1
𝑗=0  

 

𝑍(𝑚) = �𝑧𝑖,𝑗�𝐿×𝑈
= [𝑧∗,0, 𝑧∗,1, … , 𝑧∗,𝑈−1] 

and 

1�⃗ = [1, … ,1]𝑇 . 

Note that the metric is invariant to this transformation because |𝑏𝑖|2 = 1. 
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𝜏(𝐶) ≜ ���〈𝑐∗,𝑖, 𝑐∗,𝑗〉�
2

𝑈−1

𝑗=0
𝑗≠𝑖

𝑈−1

𝑖=0  

𝜏�𝑍, 𝑏�⃗ � = ���
1
𝑏𝑖

1
𝑏𝑗
〈𝑧∗,𝑖, 𝑧∗,𝑗〉�

2𝑈−1

𝑗=0
𝑗≠𝑖

𝑈−1

𝑖=0  

𝜏(𝑍) = ���〈𝑧∗,𝑖, 𝑧∗,𝑗〉�
2

𝑈−1

𝑗=0
𝑗≠𝑖

𝑈−1

𝑖=0

= 𝜏(𝐶) 
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APPENDIX C. Invariance to Permutations 
 

Definition 1: The subset 𝒮𝒮𝑎𝑎�⃗  is the subset of matrices 𝑌 = �𝑦𝑖,𝑗�
𝐿×𝑈

 and 𝑍 = �𝑧𝑖,𝑗�
𝐿×𝑈

 
that meet the following condition: 

𝑎𝑖 = �� 𝑦𝑖,𝑗

𝑈−1

𝑗=0

� = �� 𝑧𝑖,𝑗

𝑈−1

𝑗=0

� 

Eq. 31    
 
 

Definition 2: 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏 is the subset of matrices 𝑌 = �𝑦𝑖,𝑗�
𝐿×𝑈

 and 𝑍 = �𝑧𝑖,𝑗�
𝐿×𝑈

 such that: 

𝑎𝑖 = �� 𝑦𝑖,𝑗

𝑈−1

𝑗=0

� = �� 𝑧𝑖,𝑗

𝑈−1

𝑗=0

� 

 

𝑇𝑆𝐶(𝑌) = 𝑇𝑆𝐶(𝑍) = 𝜏 

Eq. 32    

 
 

Proposition 1: The TSC is invariant to permutations and sign-inversions of rows 
and columns. 

Proof: A permutation matrix 𝒫 has the following property: 

𝒫 ∙ 𝒫𝑇 = 𝐼 

Using our definition of a TSC for a binary antipodal matrix [Eq. 4], 

𝑇𝑆𝐶(𝒫1𝐶𝒫2) = ‖𝒫2𝑇𝐶𝑇𝒫1𝑇𝒫1𝐶𝒫2‖𝐹2 − 𝐿 ∙ 𝑈 

= ‖𝐶𝑇𝒫1𝑇𝒫1𝐶𝒫2𝒫2𝑇‖𝐹2 − 𝐿 ∙ 𝑈 

= ‖𝐶𝑇𝐶‖𝐹2 − 𝐿 ∙ 𝑈 

= 𝑇𝑆𝐶(𝐶) 

Proposition 2: The TSC is invariant to transposition. 

Proof:  The Frobenius norm is invariant to transposition. The term 𝐿 ∙ 𝑈 does not 
change after transposing the matrix 𝐶. 
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As an important note, it is interesting to mention that Hadamard matrices are 
known to be invariant to permutations of rows and columns, sign inversions of rows 
and columns and transposition. [10] 

Proposition 3: The energy of a signal is invariant under the following 
transformation using permutation matrices: 

𝑏�⃗ ′ = 𝒫1𝑏�⃗  

𝐶′ = 𝒫2𝐶𝒫1𝑇 

Proof: This is an easy proof using permutation matrices. The energy of a CDMA per 
symbol signal is given by: 

�⃗�𝑇�⃗� = 𝛾𝑏�⃗ 𝑇𝐶𝑇𝐶𝑏�⃗  

�⃗�′𝑇�⃗�′ = 𝛾𝑏�⃗ ′𝑇𝐶′𝑇𝐶′𝑏�⃗ ′ 

�⃗�′𝑇�⃗�′ = 𝛾�𝒫1𝑏�⃗ �
𝑇

(𝒫2𝐶𝒫1𝑇)𝑇(𝒫2𝐶𝒫1𝑇)�𝒫1𝑏�⃗ � 

�⃗�′𝑇�⃗�′ = 𝛾𝑏�⃗ ′𝑇𝒫1𝑇𝒫1𝐶𝑇𝒫2𝑇𝒫2𝐶𝒫1𝑇𝒫1𝑏�⃗  

�⃗�′𝑇�⃗�′ = 𝛾𝑏�⃗ 𝑇𝐶𝑇𝐶𝑏�⃗  

�⃗�′𝑇�⃗�′ = �⃗�𝑇�⃗� 

 

Proposition 4: Let Z be a matrix subset 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏, 𝒫𝑐𝑐 a matrix permutation with binary 
elements {+1 or 0}, and 𝒫𝑠 a diagonal matrix that consists of ±1 entries. Then the 
transformation: 

𝑍′ = 𝒫𝑠 ∙ 𝑍 ∙ 𝒫𝑐𝑐 

Eq. 33    

 

is also contained in the subset 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏. 

Proof:  It is assumption that 𝑍 ∈ 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏.with: 

𝑎𝑖 = �� 𝑧𝑖,𝑗

𝑈−1

𝑗=0

� ,𝑎𝑛𝑑 

𝑇𝑆𝐶(𝑌) = 𝑇𝑆𝐶(𝑍) = 𝜏. 
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Also, it is claimed that 𝑍′ ∈ 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏. under 𝑍′ = 𝒫𝑠 ∙ 𝑍 ∙ 𝒫𝑐𝑐.  Therefore, 

 

𝑎𝑖 = �� 𝑧′𝑖,𝑗

𝑈−1

𝑗=0

� = �𝒫𝑠 ∙ 𝑍 ∙ 𝒫𝑐𝑐 ∙ 1�⃗ � = �(𝒫s)𝑖,𝑖 �� 𝑧𝑖,𝑗(𝒫𝑐𝑐)𝑗,𝑘 ⋅ 1
𝑈−1

𝑗=0

𝑈−1

𝑘=0

� 

 

𝑎𝑖 = �� 𝑧′𝑖,𝑗

𝑈−1

𝑗=0

� = �� 𝑧𝑖,𝑗

𝑈−1

𝑗=0

� 

 

The expression (𝒫𝑐𝑐)𝑗,𝑘 does not change the sign of the column 𝑧∗,𝑗.  It only sorts the 
columns. Also, 

𝑇𝑆𝐶(𝑍) = 𝑇𝑆𝐶(𝑍′) = 𝜏 

 

by Proposition 1.  Therefore, under the transformation 𝑍′ = 𝒫𝑠 ∙ 𝑍 ∙ 𝒫𝑐𝑐, the 
transformation is also part of the subset: 𝑍′ ∈ 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏. 
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APPENDIX D. Simplification of the 
Likelihood Function 

 

The next step in the simplification of the likelihood requires partitioning the matrix 
space 𝑍 in subsets of equal TSC and energy. Averaging over the likelihood will be 
replaced with an average over matrices belonging to all subsets 𝒮𝒮𝑎𝑎�⃗  and all the 
possible sign inversions. 

𝜆(𝑟|ℋ) = �
1

2𝑆𝑢𝑚(𝑎𝑎𝑖=0) � � 𝑃(𝑍′) ∙ 𝜆�𝑟|ℋ,𝑍′, 1�⃗ �
𝐴𝑙𝑙 𝒫𝑠 𝑍′∈ 𝒮𝒮𝑎��⃗𝐴𝑙𝑙 𝑎𝑎�⃗  

An element of �⃗� that equals zero introduces double counting of spreading matrices 
in the subset 𝒮𝒮𝑎𝑎�⃗ .  To correct this, we must divide by 2 raised to the sum of all zero 
elements in �⃗�. 

The entire summation can be calculated if the whole set 𝒮𝒮𝑎𝑎�⃗  is known for every 
possible vector �⃗�.  The summation over the sign inversion matrices 𝒫𝑠 can be 
simplified as follows: 

� 𝑃(𝑍) ∙ 𝜆�𝑟|ℋ,𝑍, 1�⃗ �
𝐴𝑙𝑙 𝒫𝑠 

= 𝑒−𝛾∑ 〈𝑧∗,𝑖,𝑧∗,𝑖〉−𝛽∙𝜏𝜏(𝑍)𝑈−1
𝑖=0 � 𝑒�2𝛾∑ Re{𝑟𝑖}𝐿−1

𝑖=0 𝜌𝑖,𝑖 ∑ 𝑧𝑖,𝑗𝑈−1
𝑗=0

𝐴𝑙𝑙 𝜌𝑖,𝑖=±1

 

Using Theorem 1 of Appendix E, results in  

� 𝑒�2𝛾∑ Re{𝑟𝑖}𝐿−1
𝑖=0 𝜌𝑖,𝑖 ∑ 𝑧𝑖,𝑗𝑈−1

𝑗=0

𝐴𝑙𝑙 𝜌𝑖,𝑖=±1

= � … � 𝑒∑ 𝜌𝑖,𝑖𝐿−1
𝑖=0 ��2𝛾Re{𝑟𝑖}∑ 𝑧𝑖,𝑗𝑈−1

𝑗=0 �

𝜌𝐿−1,𝐿−1=±1𝜌0,0=±1

 

 

= 2𝐿� cosh (�2𝛾 ∙ 𝑟𝑖 � 𝑧𝑖,𝑗

𝑈−1

𝑗=0

)
𝐿−1

𝑖=0

 

= 2𝐿� cosh (�2𝛾 ∙ 𝑟𝑖 �� 𝑧𝑖,𝑗

𝑈−1

𝑗=0

�)
𝐿−1

𝑖=0

 

= 2𝐿� cosh (�2𝛾 ∙ 𝑟𝑖 ∙ 𝑎𝑖)
𝐿−1

𝑖=0

 

So, 

� 𝑃(𝑍) ∙ 𝜆�𝑟|ℋ,𝑍, 1�⃗ �
𝐴𝑙𝑙 𝒫𝑠 

= 2𝐿𝑒−𝛽∙𝜏𝜏(𝑍)−𝛾∑ |𝑎𝑎𝑖|2𝑈−1
𝑗=0 � cosh (�2𝛾 ∙ Re{𝑟𝑖} ∙ 𝑎𝑖)

𝐿−1

𝑖=0
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= 2𝐿𝑒−𝛽∙𝜏𝜏(𝑍) �𝑒−𝛾|𝑎𝑎𝑖|2cosh (�2𝛾 ∙ Re{𝑟𝑖} ∙ 𝑎𝑖)
𝐿−1

𝑖=0

 

The sum over 𝒮𝒮𝑎𝑎�⃗  can be expressed in the sum of all possible TSC values 𝜏 and all the 
subsets 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏. 

𝜆(𝑟|ℋ) = �
1

2𝑆𝑢𝑚(𝑎𝑎𝑖=0) � � � 𝑃(𝑍) ∙ 𝜆�𝑟|ℋ,𝑍, 1�⃗ �
𝐴𝑙𝑙 𝒫𝑠 Z ∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏𝐴𝑙𝑙 𝑎𝑎�⃗

 

 

� 𝑃(𝑍) ∙ 𝜆�𝑟|ℋ,𝑍, 1�⃗ �
𝐴𝑙𝑙 𝒫𝑠 

=
1
𝑤
�

1
2𝑆𝑢𝑚(𝑎𝑎𝑖=0) � � 2𝐿𝑒−𝛽∙𝜏𝜏(𝑍) �𝑒−𝛾∑ �𝑧𝑖,𝑗�

2𝑈−1
𝑗=0 cosh (�2𝛾 ∙ Re{𝑟𝑖} �𝑧𝑖,𝑗

𝑈−1

𝑗=0

)
𝐿−1

𝑖=0Z ∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏𝐴𝑙𝑙 𝑎𝑎�⃗

 

 

=
1
𝑤
�

1
2𝑆𝑢𝑚(𝑎𝑎𝑖=0) � � 2𝐿𝑒−𝛽∙𝜏𝜏�𝑒−𝛾𝑎𝑎𝑖

2
cosh (�2𝛾 ∙ Re{𝑟𝑖} ∙ 𝑎𝑖)

𝐿−1

𝑖=0Z ∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏𝐴𝑙𝑙 𝑎𝑎�⃗

 

 

= � ��𝑒−𝛾∑ 𝑎𝑎𝑖
2𝑈−1

𝑗=0 cosh (�2𝛾 ∙ Re{𝑟𝑖} ∙ 𝑎𝑖)
𝐿−1

𝑖=0

�
1
𝑤
�

2𝐿

2𝑆𝑢𝑚(𝑎𝑎𝑖=0) � � 𝑒−𝛽∙𝜏𝜏(𝑍)

Z ∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏

�
𝐴𝑙𝑙 𝑎𝑎�⃗

 

 

𝑤 = �
2𝐿

2𝑆𝑢𝑚(𝑎𝑎𝑖=0) � � 𝑒−𝛽∙𝜏𝜏(𝑍)

𝑍∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏𝐴𝑙𝑙 𝑎𝑎�⃗

 

The likelihood of a CDMA signal can be expressed as a sum of a product. The first 
term depends only on �⃗� and can be expressed as a product of cosh functions. The 
second term depends on �⃗� and 𝜏.  The variable matrix 𝑍 can be replaced with the 
spreading matrix 𝐶. This equation is consistent with the exact likelihood calculated 
for simple CDMA cases as shown in Appendix F. 
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APPENDIX E. Discrete Exponential Averages 
 

Theorem 1: Let �⃗� and 𝑢�⃗  be vectors in ℝ𝐿×1. The average of the exponent of the dot 
product between �⃗� and 𝑢�⃗  over the vector elements 𝑥𝑖 = ±𝑎𝑖  is given by: 

1
2

� …
1
2

� 𝑒𝑢��⃗ 𝑇�⃗�
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0

= � cosh (𝑢𝑖 ∙ 𝑎𝑖)
𝐿−1

𝑖=0

. 

Proof:  This property can be proven by induction. Consider vectors �⃗�′ and 𝑢�⃗ ′ be 
vectors in ℝ𝐿+1×1. The dot product of vectors �⃗�′ and 𝑢�⃗ ′  can be constructed by 
multiplying by the exponential term 𝑒𝑢𝐿∙𝑥𝐿 on both sides of the equation: 

1
2

� …
1
2

� 𝑒𝑢��⃗ 𝑇�⃗�+𝑢𝐿∙𝑥𝐿
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0

= 𝑒𝑢𝐿∙𝑥𝐿� cosh (𝑢𝑖 ∙ 𝑎𝑖)
𝐿−1

𝑖=0

 

Then, averaging over the variable 𝑥𝐿 results in: 

1
2

� …
1
2

� 𝑒𝑢��⃗ 𝑇�⃗�+𝑢𝐿∙𝑥𝐿
𝑥𝐿=±𝑎𝑎𝐿𝑥0=±𝑎𝑎0

=
1
2

� 𝑒𝑢𝐿∙𝑥𝐿
𝑥𝐿=±𝑎𝑎𝐿

� cosh (𝑢𝑖 ∙ 𝑎𝑖)
𝐿−1

𝑖=0

 

= cosh (𝑒𝑢𝐿∙𝑥𝐿)� cosh (𝑢𝑖 ∙ 𝑎𝑖)
𝐿−1

𝑖=0

 

= � cosh (𝑢𝑖 ∙ 𝑎𝑖)
𝐿

𝑖=0

 

Therefore, the formula applies to vectors in ℝ𝐿+1. 

Corollary 1-1: 

1
2

� …
1
2

� cosh (𝑢�⃗ 𝑇�⃗�)
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0

= � cosh (𝑢𝑖 ∙ 𝑎𝑖)
𝐿−1

𝑖=0

 

Proof:  The proof is derived from Theorem 1. It requires decomposing the cosh 
function in a sum of exponentials. 

1
2

� …
1
2

� cosh (𝑢�⃗ 𝑇�⃗�)
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0

=
1
2

� …
1
2

�
𝑒𝑢��⃗ 𝑇�⃗� + 𝑒−𝑢��⃗ 𝑇�⃗�

2
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0

 

=
1
2

� …
1
2

�
𝑒𝑢��⃗ 𝑇�⃗�

2
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0

+
1
2

� …
1
2

�
𝑒−𝑢��⃗ 𝑇�⃗�

2
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0

 

Approved for Public Release; Distribution Unlimited 
33 



=
1
2
� cosh (𝑢𝑖 ∙ 𝑎𝑖)
𝐿−1

𝑖=0

+
1
2
� cosh (𝑢𝑖 ∙ 𝑎𝑖)
𝐿−1

𝑖=0

 

= � cosh (𝑢𝑖 ∙ 𝑎𝑖)
𝐿−1

𝑖=0

 

Corollary 1-2: 

1
2

� …
1
2

� sinh (𝑢�⃗ 𝑇�⃗�)
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0

= 0 

Proof:  The proof is derived from Theorem 1. It requires decomposing the cosh 
function in a sum of exponentials. 

1
2

� …
1
2

� 𝑒𝑢��⃗ 𝑇�⃗�
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0

=
1
2

� …
1
2

� cosh(𝑢�⃗ 𝑇�⃗�) + sinh (𝑢�⃗ 𝑇�⃗�)
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0

 

= � cosh (𝑢𝑖 ∙ 𝑎𝑖)
𝐿−1

𝑖=0

+
1
2

� …
1
2

� sinh (𝑢�⃗ 𝑇�⃗�)
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0

 

= � cosh (𝑢𝑖 ∙ 𝑎𝑖)
𝐿−1

𝑖=0

 

Therefore the average over sinh functions must equal zero. 

Corollary 1-3: 

1
2
� +⋯+

1
2

�
1
2

� …
1
2

� cosh(𝑢�⃗ 𝑇�⃗�) cosh(�⃗�𝑇�⃗�)
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0𝑦𝑀−1=±1𝑦0±1

=
1
2
� +⋯+

1
2

�
1
2

� …
1
2

� cosh(𝑢�⃗ 𝑇�⃗� + �⃗�𝑇�⃗�)
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0𝑦𝑀=±1𝑦0±1

 

Proof:  The proof is derived from Theorem 1. It requires decomposing the cosh 
function in a sum of exponentials. 

cosh(𝑢�⃗ 𝑇�⃗�) cosh(�⃗�𝑇�⃗�) = 1
4

(𝑒𝑢��⃗ 𝑇�⃗�+𝑣�⃗ 𝑇𝑦�⃗ + 𝑒𝑢��⃗ 𝑇�⃗�−𝑣�⃗ 𝑇𝑦�⃗ + 𝑒−𝑢��⃗ 𝑇�⃗�+𝑣�⃗ 𝑇𝑦�⃗ + 𝑒−𝑢��⃗ 𝑇�⃗�−𝑣�⃗ 𝑇𝑦�⃗ ) 

Averaging over 𝑒±𝑢��⃗ 𝑇�⃗�±𝑣�⃗ 𝑇𝑦�⃗  does not depend on the sign of 𝑢�⃗  or �⃗�. Therefore, 
averaging over a product of cosine functions produces four terms which averages 
are equal. 

��𝑒𝑢��⃗ 𝑇�⃗�+𝑣�⃗ 𝑇𝑦�⃗

�⃗�

=
𝑦�⃗

��𝑒±𝑢��⃗ 𝑇�⃗�±𝑣�⃗ 𝑇𝑦�⃗

�⃗�𝑦�⃗
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1
2𝑀

�
1
2𝐿
� cosh(𝑢�⃗ 𝑇�⃗�) cosh(�⃗�𝑇�⃗�)
�⃗�

=
1

2𝑀
�

1
2𝐿
�𝑒𝑢��⃗ 𝑇�⃗�+𝑣�⃗ 𝑇𝑦�⃗

�⃗�𝑦�⃗𝑦�⃗

 

Applying Theorem 1 and Corollary 1 to the left side of the expression proves the 
Corollary 3. 

1
2
� +⋯+

1
2

�
1
2

� …
1
2

� cosh(𝑢�⃗ 𝑇�⃗�) cosh(�⃗�𝑇�⃗�)
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0𝑦𝑀=±1𝑦0±1

=
1
2
� +⋯+

1
2

�
1
2

� …
1
2

� cosh(𝑢�⃗ 𝑇�⃗� + �⃗�𝑇�⃗�)
𝑥𝐿−1=±𝑎𝑎𝐿−1𝑥0=±𝑎𝑎0𝑦𝑀=±1𝑦0±1

 

 

  

Approved for Public Release; Distribution Unlimited 
35 



APPENDIX F. Exact Likelihood 
Sample Code for Simplification 

of a 3x3 Hypothesis 
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(• DERIVE THE LIKELIHOOD FUNCTION *) 
ClearAll[c , r , b); Clear[CC, X, Y, a ]; 

(• 1. DEFINE: Code Length and Number ot users w) 

L =l; U =l; 

(• 2. CONSTRUCT: COMA Spreading Matrix *) 
cc = Array [Subscript [c , u2 - 1, u l - 1] &, {L, U}); 
cc II MatrixForm 

[

c • .• 
c o, t 

c o.2 

c 1
. • c2.•l 

Ct , t c 2, 1 

c 1,2 c 2,2 

(• 3. CONSTRUCT: Information vector •> 
8 = Array [Subscript [b , u - 1, K] &, {U, 1}); 
8 II MatrixForm 

(• 4. CONSTRUCT: correlator output Formatted as a vector •> 
R = Array[Subscript[r , K, u l -1] &, {L, 1}]; 
R II MatrixForm 

(• s. COMPUTE: correlator Term ot the conditional Likelihood •> 
x = R1 . CC . 8 ; 
X = X [[l,l)) 

bo,K (c o,o r K,O • c o, t r K, t • c o,2 r K,2) • 

b1,x (ci,O r x.o • C1,1 r x,I • C1,2 r x,2 ) • b2,x (c2,0 r x.o • C2,1 r x,I • C2,2 r x,2 ) 
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(• 6. CONSTRUCT: unnormalizcd signal model •> 
S = {CC . B); 
s II MatrixForm 

[ 

b o , K Co , O + b t , K C t , O + b 2 , K C2 , 0 l 
b o , K Co , l + b t , K C t , l + b 2 , K C2 , 1 

b o , K Co , 2 + b t , K C t , 2 + b 2 , K C2 , 2 

(• 1. CONSTRUCT: snergy Term 
BT = (S' . S) ; 
BT = Expand[BTI; 
BT = BT I . v .... 2 -> 1; 
BT = BT [ [1, 111 

ot the Likelihood Function 

9 • 2 b o,K b t ,K c o.o c t , o • 2 b o,K b t ,K c o, t c t , t • 2 b o,K b t ,K c o,2 c t , 2 • 

2 bo,x b2,x Co,o c2,0 • 2 b t,x b2,x cl,O c2,0 • 2 bo,x b2,x Co, I c2,I • 

2 b t,x b2,x cl,I c2,I • 2 bo,x b2,x Co,2 c2,2 • 2 b t,x b2,x cl,2 c2,2 

(• 8. CONSTRUCT: TOTAL SQUAR&D CORRELATION •) 
c2 = cc' . cc; 
V2 = 0; 
For[ il = 1, il s u , il ++, 

For ( i 2 = 1 I i 2 .s u I i 2 + + 1 

If[ il ~ 12, 

I ; 

V2 = V2 + C2 [ [ il , 1 211 •2 

I 
I ; 

w1 = Expand[V2 1 1 . (_' 2 ~ 1) 1 . (_' 4 ~ 1); 
FML = wl 

•) 

(• 9. CONSTRUCT: weight ot the Joint Distribution ot the code 
coefficients •> 

z = Flatten [CC); 
If[ L ~1, 

I 

W1 = Exp[-ll< Wl l; 
For [ i = l1 i s Length [ z ] 1 i •• 1 

If[l NumberQ [ Z[[1 111 , 
rl = ( Z [[1 )) ~ Z ); 
Wl = Wl I. rl ; 

I ' 

Wl = Sum[Wl 1 ( Z1 {-11 1}}]; 

I ; 

W1 = Exp[-Jl l; 
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W1 

18 • 4 co,o co,t c l. o c l , l • 4 co,o co,2 c l. o c l ,2 • 4 co,t co,2 c l , l c l ,2 • 

4 co.o co, I c2,o c2,I • 4 ci,o ci,I c2,o c2,I • 4 co.o co,2 c2,o c2,2 • 
4 ci,o ci,2 c2,o c2,2 • 4 c o, I c o,2 c2,I c2,2 • 4 ci,I ci,2 c2,I c2,2 

32 e S.t .6 + 288 e 2l .6 + 19 2 e &IJ 

(• 10. 
CONSTRUCT: conditional likelihood given code matrix and 

information vector •> 
CL = Exp[Sqrt[2 y i• X - y • BT - .B • FML I ; 

(• 11. COMPUTE: Average Likelihood Function •> 
Clear[z ] ; 
AL = CL; 

z = Joi n[Flatten[CCI, Flat ten[BII ; 
For[ i = 1, i s Length[Z], i ++, 

If ( 1 NumberQ [ Z[[ i ))l , 

rl = ( Z [[ i )) -+ Z }; 
AL = AL / . rl ; 

1 ; 

If[NumberQ( Z [[ i )) / . {c_,_ -+0}1, 

AL = sum ( AL, { z , { -1, 1}} 1 , 
AL = 1 / 2 • sum [ AL, ( z , ( -1, 1 }} I 

1 ; 
1 ; 

(• ll. 
SIMPLIFY: Rules to Obtain the Likelihood Function in a Simple Form •) 

(• Trivial Expansion ot the Exponents •) 
ALS = AL I , Exp[aaa_ l ,. Exp[Expan<l[aaa ll ; 

(• RULE: Rename Exp[ r(i) a 1 to P'a •> 
rulc2 = 

{ Exp ( Plus ( exl_] + ex2_ • r a:, .s_ ] :-t 

Exp [Plus [ exl ]] • Subscript [P , s ] "Times [ ex2 ] } ; 

For[ i = 1, i s L, i ++, 
ALS = ALS I . rulc2 ; 

I 
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(• RULE: convert the variables P~a to cosh[r(i)•a ) + sinh[r(i)•a ) •> 
ruleJ = 

{ Subscrlpt ( P, s_] "" Tlmes ( ex2_] :-t 

cosh [Times [ ex2 ] • Subscript [r , K, s ]] + 

Sinh (Times ( ex2] •Subscript ( r , K, s ]] }; 
ALS = Expand[ALS / . ruleJ]; 

(• 12. FINAL LIKELIHOOD FORM •) 
ALS = Expand[ALS / Wl ) 

24 e "~ 3 YCosh [V2 -.fY r K.•J Cosh [fi -.fY r K, t] Cosh[fi -.fY r K,2] 

32 e 5".6 + 288 e 22 .6 + 192 e &.6 
+ 

144 e 22 ~ 3 • Cosh [V2 -.fY r K,G ] Cosh [fi -.fY r K,t] Cosh [fi -.fY r K, 2] 

32 e 54 13 • 288 e 22 13 -+- 192 e &13 

48 e ' ~ 3 • Cosh [V2 -.fY r K,G ] Cosh [fi -.fY r K,t] Cosh[fi -.fY r K, 2] 
+ 

32 e 54 13 • 288 e 22 13 -+- 192 e &13 

24 e 22 ~ 11• Cosh [3 V2 -.fY r K,G ] Cosh [fi -.fY r K,t] Cosh [fi -.fY r K, 2] 

32 e 54 13 • 288 e 22 13 -+- 192 e &13 

48 e ' ~ 11• Cosh [3 V2 -.fY r K,G ] Cosh [fi -.fY r K,t] Cosh [fi -.fY r K, 2] 

32 e 54 13 • 288 e 22 13 -+- 192 e &13 

24 e 22 ~ li YCosh [fi ..JY r K,G J Cosh [3 fi ..JY r K,t] Cosh [fi ..JY r K,2 ] 

32 e 54 13 • 288 e 22 13 -+- 192 e &13 

48 e ' ~ 11• Cosh [V2 -.fY r K,G ] Cosh [3 V2 -.fY r K,t] Cosh [fi -.fY r K, 2] 

32 e 54 13 • 288 e 22 13 -+- 192 e &13 

+ 

+ 

+ 

+ 

+ 

24 e 22 ~ 19• Cosh [3 V2 -.fY r K,G ] Cosh [3 V2 -.fY r K,t] cosh [fi -.fY r K, 2] 

32 e 54 13 • 288 e 22 13 -+- 192 e &13 

24 e 22 ~ 11• Cosh [V2 -.fY r K,G ] Cosh [fi -.fY r K,t] Cosh [3 V2 -.fY r K, 2] 

32 e 54 13 • 288 e 22 13 -+- 192 e &13 

48 e ' ~ 11• Cosh [V2 -.fY r K,G ] Cosh [fi -.fY r K,t] Cosh [3 V2 -.fY r K, 2] 

32 e 54 13 • 288 e 22 13 -+- 192 e &13 

+ 

+ 

24 e 22 ~ 19• Cosh [3 V2 -.fY r K,G ] Cosh [fi -.fY r K,t] Cosh [3 V2 -.fY r K, 2] 

32 e 54 13 • 288 e 22 13 -+- 192 e &13 

24 e 22 ~ 19• Cosh [V2 -.fY r K,G ] Cosh [3 V2 -.fY r K,t] Cosh [3 V2 -.fY r K, 2] 

32 e "~ + 288 e 22 ~ + 192 e ' ~ 

S e 54 ~ 27 • Cosh [3 fi -./Y r K,G ] Cosh [3 fi .JY r K,t] Cosh [3 fi .JY r K,2 ] 

32 e 54 .6 + 288 e 22 .6 + 192 e &.6 

+ 

+ 

+ 



 

 

 

 

 

Approved for Public Release; Distribution Unlimited 
40 

(• 13 . CASE: When P=Y •) 
LF = ALS I . (p ~ y ) 

24 e S7 YCosh [fi .JY r •.• J Cosh [fi .JY r •. t] Cosh [fi .JY r , .2] 

32 e scy + 288 e 2 2 Y + 192 e 6 Y 
+ 

144 e 25 YCosh [fi .JY r•.• J Cosh [fi .JY r.,t] Cosh [fi .JY r., 2] 

32 e SO y + 288 e 22 Y + 192 e 4 Y 

48 e '> cosh [fi .JY r ••• ] Cosh [fi .JY r.,t] Cosh [fi .JY r., 2] 

32 e SO y + 288 e 22 Y + 192 e 4 Y 
+ 

24 e 33 YCosh [3 fi .JY r•.• J Cosh [fi .JY r.,t] Cosh [fi .JY r., 2] 

32 e SO y + 288 e 22 Y + 192 e 4 Y 

48 e 11 YCosh [3 fi .JY r•.• J Cosh [fi .JY r.,t] Cosh [fi .JY r., 2] 

32 e SO y + 288 e 22 Y + 192 e 4 Y 

24 e 33 YCosh [fi .JY r•.• J Cosh [3 fi .JY r.,t] Cosh [fi .JY r., 2] 

32 e SO y + 288 e 22 Y + 192 e 4 Y 

48 e 11 YCosh [fi .JY r•.• J Cosh [3 fi .JY r.,t] Cosh [fi .JY r., 2] 

32 e SO y + 288 e 22 Y + 192 e 4 Y 

+ 

+ 

+ 

+ 

+ 

24 e 01 YCosh [3 v'2 ..fY r,,0] Cosh [3 v'2 ..fY r,,t] Cosh [Yl ..fY r,, 2] 

32 e SO y + 288 e 22 Y + 192 e 4 Y 

24 e 33 YCosh [fi .JY r•.• J Cosh [fi .JY r.,t] Cosh [3 fi .JY r., 2] 

32 e SO y + 288 e 22 Y + 192 e 4 Y 

48 e 11 YCosh [fi .JY r•.• J Cosh [fi .JY r.,t] Cosh [3 fi .JY r., 2] 

32 e SO y + 288 e 22 Y + 192 e 4 Y 

+ 

+ 

24 e 01 YCosh [3 fi .JY r•.• J Cosh [fi .JY r.,t] Cosh [3 fi .fY r., 2] 

32 e S4y + 288 e 22 Y + 192 e 6Y 

24 e 01 YCosh [fi .JY r•.• J Cosh [3 fi .JY r.,t] Cosh [3 fi .fY r., 2] 

32 e SO y + 288 e 22 Y + 192 e 4 Y 

8 e 91 Y Cosh [ 3 V2 .JY r•.• J Cosh [ 3 V2 .JY rK, t] Cosh [ 3 V2 ·./Y rK,2 ] 

32 e 54 Y • 288 e 22 Y -+- 192 e 6 Y 

+ 

+ 

+ 
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(• 14. CONSTRUCT: EMPIRICAL LIKELIHOOD •) 

(• Multicombinatlons •> 
BZ = Floor[U/2) +1; 
MDlgitBaseBZofN • runction[{ N, sz , MJ, lst • {OJ; 

If[ BZ > 1, 1st • IntegerDigits[N, BZ)); 
If[ M >Length[lst ] II Length[lst ] '' 0 1 0 1 lst [[Length[lst ] +1- M]JJJ; 

ezt. .. l 1 L 

J- = L: a [L1 U1 L L:«L +l) ' (MDigitBascBZofN[N1 BZ1 M2 : ) -1)] 
N• O H2 • 1 

L n (sxp[- y (2 • MDigitBascBZofN [N1 BZ1 M) + Mod[U1 2]) ' 21 1] 
M• l 

cosh [ (h MDlgltBascBZofN [N 1 BZ 1 M 1 + MOd [U 1 2]) -./ 2 -r 1 1 r •.• • ,]) 

e 3
Y Cosh [fi .JY r • . o] Cosh [fi .JY r • . ,J Cosh [fi .JY r • . , ] a[ 31 31 OJ + 

e 11 • Cosh [3 fi .JY r,,0 ] Cosh [fi .JY r ,,,J Cosh [fi .JY r,,2 ] a[31 31 1) + 

e 11 • Cosh [fi .JY r,,0 ] Cosh [3 fi .JY r ,,,J Cosh [fi .JY r,,2 ] a[31 31 1) + 

e 11 • Cosh [fi .JY r,,0 ] Cosh [fi .JY r ,,,J Cosh [3 fi .JY r,,2 ] a[31 31 1) + 

e 19• Cosh [3 V2 .JY r,,0 ] Cosh [3 V2 .JY r ,,,J Cosh [fi .JY r ,,2 ] a[31 31 2 ) + 

e 19• Cosh [3 V2 .JY r,,0 ] Cosh [fi .JY r , 1>] Cosh [3 V2 .JY r ,,2 ] a[31 31 2 ) + 

e 19• Cosh [V2 .JY r ,,0 ] Cosh [3 V2 .JY r ,,,J Cosh [3 V2 .JY r ,,2 ] a[31 31 2 ) + 

e 27 • Cosh [3 V2 .JY r ,,0 ] Cosh [3 V2 .JY r ,,,J Cosh [3 V2 .JY r ,,2 ] a[31 31 3 ) 

(• 15. CASE: When a(~~~> tor Different Feature vectors •> 
a [J, 3, OJ = 

(ALs 11 . {cosh [ V2 .JY r , ,0 ] cosh [ V2 .JY r , , ,] cosh [ V2 ·/Y r , ,,] -+ y I 

cosh[_ ) -+ o } ) I . {Y -+ l1 y -+ 0 } 

Plot (LOg[a [J, 3, 0]], { /3 , O, 20}, PlotRange ~Full, 

PlotL abel-+ "a 3, 3,0 (J3] ", AXesLabel-+ {"J3 ", "LOg [a3, 3,0 [J3]] "}) 
Together[ a [31 3 1 OJ I . { Exp[u_ .B l-+ z ' ( - u l 16})] 

24 e 54 .6 

---~~---~---~ + 
32 e 54 .6 + 288 e 22 Jl + 192 e &IJ 

144 e 22 13 48 e &IJ 
--,.--,---...,..,--,---...,...,-+--,.-,-----,--,------,-
32 e 54 13 • 288 e 22 13 -+- 192 e 613 32 e 54 .6 + 288 e 22 .6 + 192 e 6 6 
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Logl«.u n 1/lll 

-0.9 

- 1.0 

-1.1 

- 1.2 

3 (2 +6 z + z 3 ) 

4 (6 + 9Z+z3 ) 

a [J, 3, 1] = 

5 

"unlfil 

10 IS 20 
/l 

(ALs 11 . { cosh [ 3 V2 YY r , ,0 J cosh [Y2 YY r , , .] cosh [Y2 YY r , , , ]-+ y , 

cosh[_ ) .. o }) I . {Y .. 1 .1· .. 0 } 

Plot[LOg[a [J, 3, 1]], { /3 , O, 20}, Plot Range ~Full, 

PlotLabel-+ "a 1/ll " AXesLabel-+ {"fl " "LOg [a [/l ' J"}) l,l, l , , 3,3, 1 . 

Together[ a [3, 3, 11 I . { Exp[u_ .B I-+ z ' ( - u / 16) Jl 

24 e 22 .6 48 e 4 .6 
-----,-:-:-----:-:-::----:-:- + ----:-:-:-----:-:-::------,:-:-
32 e 54 .6 + 288 e 22 .6 + 192 e &IJ 32 e 54 .6 + 288 e 22 .6 + 192 e 4 .6 

<>u.dfil 
Losl«.u .1 1/lll 

- 1.4 _,---

- 1.5 

- 1.6 

- 1.7 

- 1.8 

5 10 20 
/l 



 

 

Created with Wolfram Mathematica 7.0  
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a [3, 3, 2] = 

Together [ 

(ALs II . { cosb [ 3 V2 VY r . ,o J cosb [ 3 V2 VY r • •• J cosb [ V2 VY r . ,, J .. y , 

cosb[_) .. o }) 1 . {y .. 1, y .. OJ] 
Plot [LOg[a [3, 3, 2]], {/3 , O, 20}, PlotRange ~Full, 

PlotLabel ~ "a 3, 3, 2 (J3] ", AXesLabel ~ {"J3 ", " LOg [a3, 3, 2 (J3]] "}) 

Togetber[ a [3, 3, 2] I . { Exp[u_ .B l .. z ' {- u l 16) Jl 

L.ogi«.Lu 1/lll 

-50 

- 100 

- 150 

-200 

-250 

-300 

J z 

a [3, 3, 3] = 

Together [ 

5 10 lO 
/l 

(ALs I I . { cosb [ 3 V2 VY r . ,o] cosb [ 3 V2 VY r • •• ] cosb [ 3 V2 VY r . ,, ] .. y , 

cosb[_) .. o }) 1 . {y .. 1, y .. OJ] 
Plot [LOg[a [3, 3, 3]], {/3 , O, 20}, PlotRange ~Full, 

PlotLabel ~ "a 3, 3, 3 (J3] ", AXesLabel ~ {"J3 ", " LOg [a3, 3, 3 (J3]] "}) 

Togetber[ a [3, 3, 3) I . { Exp[u_ .B l .. z ' {- u l 16) J : 



APPENDIX G. Calculation of 𝜶𝑳,𝑼,𝒂��⃗ (𝜷) 
Using Programming Code 

 

The implementation of the average likelihood takes the following form 

𝜆(𝑟|ℋ) = � 𝛼𝐿,𝑈,𝑎𝑎�⃗ �𝑒−𝛾∑ 𝑎𝑎𝑖
2𝑈−1

𝑗=0 cosh (�2𝛾 ∙ Re{𝑟𝑖} ∙ 𝑎𝑖)
𝐿−1

𝑖=0𝐴𝑙𝑙 𝑎𝑎�⃗

 

where 

𝛼𝐿,𝑈,𝑎𝑎�⃗ =
2𝐿

2𝑆𝑢𝑚(𝑎𝑖=0) ∑ ∑ 𝑒−𝛽∙𝜏𝜏(𝐶)
𝐶∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏

∑ 2𝐿

2𝑆𝑢𝑚(𝑎𝑖=0) ∑ ∑ 𝑒−𝛽∙𝜏𝜏(𝐶)
𝐶∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏𝐴𝑙𝑙 𝑎𝑎�⃗

 

A Matlab implementation of the parameters is shown below. The code was executed 
using AFRL Condor HPC cluster for calculating the values of alphas when 𝛽 → ∞. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculation of the numerator of the alpha parameters using formula. 
% A. Vega, Last Modified: October 8, 2013 
% inputs: a = vector vector, U = number of users 
% output: matrix = [ TSC, occurrences ] 
% formatted output = occurrences * e^(beta*TSC) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function output = alphaParam(a,U) 
 
% Ensure positive coefficients 
a = abs(a); 
 
% Code length of the spreading matrix 
L = length(s);  
 
% Calculate possible column permutations such that sum(cols) >= 0 
colPerm = []; 
colPerm(1).x(1,:) = ones(1,U); 
for k1 = 1:floor(U/2) 
    x = ones(1,U); 
    k2 = k1; 
    while( k2 > 0 ) 
        x(1,k2) = -1; 
        k2 = k2 - 1; 
    end 
    colPerm(k1+1).x = unique(perms(x),'rows') 
end 
 
% Display possible row vectors 
if( 0 ) 
    for k3 = 1:size(a(:),1) 
        squeeze(a(k3).x(:,:)) 
    end 
end 
 
% Construct matrices using row vectors 
group = abs(U-a)/2+1; 
elems = zeros(1,U); 
for k1 = 1:L 
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    elems(1,k1) = size(colPerm(group(k1)).x,1); 
end 
 
% This algorithm is inefficient for L>6 
tic 
stack = []; mtx = zeros(L,U); 
start = ones(1,L); 
while( all(start<=elems) ) 
         
        % Generate Matrix 
        for k1 = 1:L 
            mtx(k1,:) = colPerm(group(k1)).x(start(1,k1),:); 
        end 
         
        % Calculate Total Square Correlation 
        tau = 0; 
        h2 = mtx'*mtx; 
         
        for k1 = 1:L 
            for k2 = 1:L 
                if( k1 ~= k2 ) 
                    tau = tau + h2(k1,k2)^2; 
                end 
            end 
        end 
         
        % Store value 
        stack = [stack,tau]; 
         
    %end 
     
    % This algorithm explores all possible combinations of a row in a matrix 
    % The sum of the row >= 0 
    k2 = 1; 
    while( k2 <= L ) 
        c = start(1,k2) + 1; 
        if( c > elems(1,k2) ) 
            if( k2 < L ) 
                start(1,k2) = 1; 
                k2 = k2 + 1; 
            else 
                start(1,k2) = c; 
                k2 = k2 + 1; 
            end 
        else 
            start(1,k2) = c; 
            k2 = L+1; 
        end 
    end     
end 
toc 
        
% Count all unique values 
vals = unique(stack','rows')'; 
svals = zeros(size(vals)); 
for k1 = 1:length(vals) 
    svals(1,k1) = sum(stack==vals(k1)); 
end 
 
% Display results 
[vals',svals'*2^L/2^(sum(s==0))] 
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APPENDIX H. Various 𝜶𝑳,𝑼,𝒂��⃗ (𝜷) for 𝑳 ≤ 𝟒 
 

The coefficients 𝛼 depends on the dimensions 𝐿 (rows) and 𝑈 (columns) of the 
spreading matrix 𝐶. Note that 𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) = 𝛼𝐿,𝑈,𝑏𝑏�⃗ (𝛽)  if �⃗� is a permutation of 𝑏�⃗ . 

L = 1, U = 1 

𝛼1,1,[1]𝑇
⋆ = 1 

L = 2, U = 1 

𝛼2,1,[1,1]𝑇
⋆ = 1 

L = 2, U = 2 

𝑧 = 𝑒−8∙𝛽 

𝛼2,2,[0,0]𝑇 = z/(2 ∗ (1 + z)) 

𝛼2,2,[2,0]𝑇
⋆ = 1/(2 ∗ (1 + z)) 

𝛼2,2,[2,2]𝑇 = z/(2 ∗ (1 + z)) 

L = 3, U = 1 

𝛼3,1,[1,1,1]𝑇
⋆ = 1 

L = 3, U = 2 

𝑧 = 𝑒−16∙𝛽 

𝛼3,2,[0,0,0]𝑇 = z/(2 ∗ (3 + z)) 

𝛼3,2,[2,0,0]𝑇
⋆ = 1/(2 ∗ (3 + z)) 

𝛼3,2,[2,2,0]𝑇
⋆ = 1/(2 ∗ (3 + z)) 

𝛼3,3,[2,2,2]𝑇 = z/(2 ∗ (3 + z)) 

L = 3, U = 3 

𝑧 = 𝑒−16∙𝛽 

𝛼3,2,[1,1,1]𝑇
⋆ = 3 ∗ (2 + 6z + z3)/(4 ∗ (6 + 9z + z3)) 

𝛼3,2,[3,1,1]𝑇
⋆ = 3 ∗ (2 + z)/(4 ∗ (6 + 9z + z3)) 
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𝛼3,3,[3,3,1]𝑇 = 3z/(4 ∗ (6 + 9z + z3)) 

𝛼3,3,[3,3,3]𝑇 = z3/(4 ∗ (6 + 9z + z3)) 

L = 4, U = 1 

𝛼4,1,[1,1,1,1]𝑇
⋆ = 1 

L = 4, U = 2 

𝑧 = 𝑒−8∙𝛽 

𝛼4,2,[0,0,0,0]𝑇 = z4/(2 ∗ (1 + z)2 ∗ (3 − 2z + z2)) 

𝛼4,2,[2,0,0,0]𝑇 = z/(2 ∗ (1 + z)2 ∗ (3 − 2z + z2)) 

𝛼4,2,[2,2,0,0]𝑇
⋆ = 1/(2 ∗ (1 + z)2 ∗ (3 − 2z + z2)) 

𝛼4,2,[2,2,2,0]𝑇 = z/(2 ∗ (1 + z)2 ∗ (3 − 2z + z2)) 

𝛼4,2,[2,2,2,2]𝑇4 = z4/(2 ∗ (1 + z)2 ∗ (3 − 2z + z2)) 

L = 4, U = 3 

𝑧 = 𝑒−8∙𝛽 

𝛼4,3,[1,1,1,1]𝑇 = 3𝑧 ∗ (12 + 6𝑧 + 8𝑧2 + 𝑧5)/(4 ∗ (6 + 36𝑧 + 9𝑧2 + 12𝑧3 + 𝑧6)) 

𝛼4,3,[3,1,1,1]𝑇
⋆ = 3 ∗ (2 + 6z + z3)/(4 ∗ (6 + 36𝑧 + 9𝑧2 + 12𝑧3 + 𝑧6)) 

𝛼4,3,[3,3,1,1]𝑇 = 3z ∗ (2 + z)/(4 ∗ (6 + 36𝑧 + 9𝑧2 + 12𝑧3 + 𝑧6)) 

𝛼4,3,[3,3,3,1]𝑇 = 3z3/(4 ∗ (6 + 36𝑧 + 9𝑧2 + 12𝑧3 + 𝑧6)) 

𝛼4,3,[3,3,3,3]𝑇 = z6/(4 ∗ (6 + 36𝑧 + 9𝑧2 + 12𝑧3 + 𝑧6)) 

L = 4, U = 4 

 𝑧 = e−8∙𝛽 

 𝑞(𝑧) =  (8 ∗ (6 + 96z3 + 144z4 + 144z7 + 81z8 + 24z12 + 16z15 + z24)) 

𝛼4,4,[0,0,0,0]𝑇 = 3z4 ∗ (12 + 6z4 + 8z8 + z20)/𝑞(𝑧) 

𝛼4,4,[2,0,0,0]𝑇 = 12z3 ∗ (2 + 6z4 + z12)/𝑞(𝑧) 

𝛼4,4,[2,2,0,0]𝑇 = 12z4 ∗ (6 + 5z4 + z8)/𝑞(𝑧) 

𝛼4,4,[2,2,2,0]𝑇 = 12z3 ∗ (6 + 9z4 + z12)/𝑞(𝑧) 
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𝛼4,4,[2,2,2,2]𝑇
⋆ =  4 ∗ (6 + 36z4 + 9z8 + 12z12 + z24)/𝑞(𝑧) 

𝛼4,4,[4,0,0,0]𝑇
⋆ = 3 ∗ (2 + 6𝑧4 + 𝑧12)/𝑞(𝑧) 

𝛼4,4,[4,2,0,0]𝑇 = 12𝑧3 ∗ (2 + 𝑧4)/𝑞(𝑧) 

𝛼4,4,[4,2,2,0]𝑇 = 12𝑧4 ∗ (3 + 𝑧4)/𝑞(𝑧) 

𝛼4,4,[4,2,2,2]𝑇 = 4𝑧3 ∗ (6 + 9𝑧4 + 𝑧12)/𝑞(𝑧) 

𝛼4,4,[4,4,0,0]𝑇 = 3𝑧4 ∗ (2 + 𝑧4)/𝑞(𝑧) 

𝛼4,4,[4,4,2,0]𝑇 = 12𝑧7/𝑞(𝑧) 

𝛼4,4,[4,4,2,2]𝑇 = 4𝑧8 ∗ (3 + 𝑧4)/𝑞(𝑧) 

𝛼4,4,[4,4,4,0]𝑇 = 3𝑧12/𝑞(𝑧) 

𝛼4,4,[4,4,4,2]𝑇 = 4𝑧15/𝑞(𝑧) 

𝛼4,4,[4,4,4,4]𝑇 = 𝑧24/𝑞(𝑧) 
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APPENDIX I. Limit of 𝜶𝑳,𝑼,𝒂��⃗ (𝜷) for 
General Cases 

  

We define the parameter 𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) using: 

𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) =
2𝐿

2𝑆𝑢𝑚(𝑎𝑖=0) ∑ ∑ 𝑒−𝛽∙𝜏𝜏𝑍∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏

∑ 2𝐿

2𝑆𝑢𝑚(𝑎𝑖=0) ∑ ∑ 𝑒−𝛽∙𝜏𝜏𝑍∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏𝐴𝑙𝑙 𝑎𝑎�⃗

 

Proposition 5.  The limit of 𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) as 𝛽 approaches infinity depends on the 
feature vectors as follows: 

lim
𝛽→∞

𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) =

⎩
⎪
⎨

⎪
⎧ 0  𝑓𝑜𝑟 �⃗� ≠ �⃗�⋆

2𝐿

2𝑆𝑢𝑚(𝑎𝑖=0) � 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏𝑚𝑖𝑛�

∑ 2𝐿

2𝑆𝑢𝑚(𝑎𝑖=0) � 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏𝑚𝑖𝑛�𝐴𝑙𝑙 𝑎𝑎�⃗

> 0  𝑓𝑜𝑟 �⃗� = �⃗�⋆
 

Proof: The expression can be converted in a polynomial rational function by 
substituting 𝑒−𝛽 → 𝑦 and divide by the exponent with the minimum Total Square 
Correlation 𝑦𝜏𝜏𝑚𝑖𝑛  in both side of the equation. 

𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) =
2𝐿

2𝑆𝑢𝑚(𝑎𝑖=0) ∑ ∑ 𝑦𝜏𝜏𝑍∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏

∑ 2𝐿

2𝑆𝑢𝑚(𝑎𝑖=0) ∑ ∑ 𝑦𝜏𝜏𝑍∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏𝐴𝑙𝑙 𝑎𝑎�⃗

 

=
2𝐿

2𝑆𝑢𝑚(𝑎𝑖=0) ∑ ∑ 𝑦𝜏𝜏−𝜏𝜏𝑚𝑖𝑛𝑍∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏

∑ 2𝐿

2𝑆𝑢𝑚(𝑎𝑖=0) ∑ ∑ 𝑦𝜏𝜏−𝜏𝜏𝑚𝑖𝑛𝑍∈ 𝒮𝒮𝑎��⃗ ,𝜏𝐴𝑙𝑙 𝜏𝜏𝐴𝑙𝑙 𝑎𝑎�⃗

 

𝜏 = 𝜏(𝑍) ≥ 𝜏𝑚𝑖𝑛 ≥ 0 

�⃗� = 𝑎𝑏𝑠(𝑍 ∙ 1�⃗ ) 

Since 𝜏 − 𝜏𝑚𝑖𝑛 ≥ 0, taking the limit: 

lim
𝑦→0

𝑦𝜏𝜏−𝜏𝜏𝑚𝑖𝑛 = �0 𝑓𝑜𝑟 𝜏 ≠ 𝜏𝑚𝑖𝑛
1 𝑓𝑜𝑟 𝜏 = 𝜏𝑚𝑖𝑛   

eliminates all terms with Total Square Correlation terms greater than 𝜏𝑚𝑖𝑛.  The 
result is: 

𝛼𝐿,𝑈,𝑎𝑎�⃗ (𝛽) =

2𝐿

2𝑆𝑢𝑚(𝑎𝑖=0) ∑ 1𝑍∈ 𝒮𝒮𝑎��⃗ ,𝜏𝑚𝑖𝑛

∑ 2𝐿

2𝑆𝑢𝑚(𝑎𝑖=0) ∑ 1𝑍∈ 𝒮𝒮𝑎��⃗ ,𝜏𝑚𝑖𝑛
𝐴𝑙𝑙 𝑎𝑎�⃗

≥ 0 
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The summation over all the terms in the set is just the cardinality of the set, 
therefore: 

𝛼𝐿,𝑈,𝑎𝑎�⃗
⋆ (𝛽) =

2𝐿

2𝑆𝑢𝑚(𝑎𝑖=0) � 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏𝑚𝑖𝑛�

∑ 2𝐿

2𝑆𝑢𝑚(𝑎𝑖=0) � 𝒮𝒮𝑎𝑎�⃗ ,𝜏𝜏𝑚𝑖𝑛�𝐴𝑙𝑙 𝑎𝑎�⃗

. 
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APPENDIX J. Feature Vectors 
Code length 𝑳 ≤ 𝟔 

 

Table J-1. Several Feature Vectors 

 L=2 L=3 L=4 L=5 L=6 

U=1 [1,1]T [1,1,1]T [1,1,1,1]T [1,1,1,1,1]T [1,1,1,1,1,1]T 

U=2 [2,0]T [2,0,0]T 

[2,2,0]T 

[2,2,0,0]T [2,2,0,0,0]T 

[2,2,2,0,0]T 

[2,2,2,0,0,0]T 

U=3  [3,1,1]T 

[1,1,1]T 

[3,3,1,1]T [3,3,1,1,1]T 

[3,3,3,1,1]T 

[3,1,1,1,1,1]T 

[3,3,1,1,1,1]T 

U=4   [2,2,2,2]T 

[4,0,0,0]T 

[2,2,2,2,2]T 

[4,0,0,0,0]T 

[2,2,2,2,0]T 

[4,2,0,0,0]T 

[4,2,2,2,2]T 

[4,4,0,0,0]T 

not 
calculated 

U=5    [3,3,3,3,3]T 

[5,1,1,1,1]T 

[3,3,1,1,1]T 

not 
calculated 

U=6     [2,2,2,0,0,0]T 

[4,2,2,2,0,0]T  

 

The Corresponding Lowest TSC Spreading Matrices 
Case: 𝐿 = 2,𝑈 = 2, 𝜏𝑚𝑖𝑛 = 0 

𝐶⋆ = �+ +
+ −� 

 

Case: 𝐿 = 3,𝑈 = 2, 𝜏𝑚𝑖𝑛 = 2 
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𝐶⋆ = �
+ +
+ −
+ +

� , �
+ +
+ −
− +

� 

Case: 𝐿 = 3,𝑈 = 3, 𝜏𝑚𝑖𝑛 = 6 

𝐶⋆ = �
+ + +
+ − +
+ + −

� , �
+ + −
+ − +
− + +

� 

Case: 𝐿 = 4,𝑈 = 2, 𝜏𝑚𝑖𝑛 = 0 

𝐶⋆ = �
+ +
+ −
+ +
+ −

� 

Case: 𝐿 = 4,𝑈 = 3, 𝜏𝑚𝑖𝑛 = 0 

𝐶⋆ = �
+
+−
+

+
−
+
+

+
+
+
−
� 

Case: 𝐿 = 4,𝑈 = 4, 𝜏𝑚𝑖𝑛 = 0 

𝐶⋆ = �
+ +
+ −

+ +
+ −

+ +
+ +

− −
− +

� , �
+ +
+ −

− +
+ +

− +
+ +

+ +
+ −

� 

Case: 𝐿 = 5,𝑈 = 2, 𝜏𝑚𝑖𝑛 = 2 

𝐶⋆ =

⎣
⎢
⎢
⎢
⎡
+
+
+
+
+

+
−
+
−
+⎦
⎥
⎥
⎥
⎤
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Case: 𝐿 = 5,𝑈 = 3, 𝜏𝑚𝑖𝑛 = 6 

𝐶⋆ =

⎣
⎢
⎢
⎢
⎡
−
+
+
+
+

+
+−
+
−

+
+
+
−
+⎦
⎥
⎥
⎥
⎤
, 

⎣
⎢
⎢
⎢
⎡
+
+
−
+
+

+
+
−
+
+

+
−
+
+
+⎦
⎥
⎥
⎥
⎤
  

 

Case: 𝐿 = 5,𝑈 = 4, 𝜏𝑚𝑖𝑛 = 12 

𝐶⋆ =

⎣
⎢
⎢
⎢
⎡
+
+
+
+
+

+
−
+
−
+

+
+
−
−
+

+
−−
+
+⎦
⎥
⎥
⎥
⎤
, 

⎣
⎢
⎢
⎢
⎡
+
+
−
+
+

+
−
+
+
+

−
+
+
+
+

+
+
+
+
+⎦
⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎡
+
+
−
+
+

+
−
+
+
+

−
+
+
+
+

+
+
+
+
+⎦
⎥
⎥
⎥
⎤
, 

⎣
⎢
⎢
⎢
⎡
+
+
−
+
+

+
−
+
+
+

−
+
+
+
+

+
+
+
−
+⎦
⎥
⎥
⎥
⎤
,  

⎣
⎢
⎢
⎢
⎡
+
+
+
+
+

+
+
+
+
+

+
+
+
+
+

+
+
+
+
+⎦
⎥
⎥
⎥
⎤
 

 

Case: 𝐿 = 5,𝑈 = 5, 𝜏𝑚𝑖𝑛 = 20 

𝐶⋆ =

⎣
⎢
⎢
⎢
⎡
+ − + + +
− + + + +
+ + − + −
+ + + − −
+ + − − +⎦

⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎡
+ + − + +
+ − + + +
− + + + +
+ + + + +
+ + + + −⎦

⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎡
+ + + + +
− + + − +
− + − + +
− − + + +
− + + + −⎦

⎥
⎥
⎥
⎤
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APPENDIX K. Simplification Using 
Sylvester’s Construction 

 

The average likelihood function under the assumption of a Sylvester’s construction 
is: 

𝜆(𝑟|ℋ = 𝐻𝐿) = �
𝑒−〈𝑟,𝑟〉

(𝜋𝑁0)𝐿�

1
2

∙ � �𝑒−𝛾|𝜉𝑖|2 cosh��2𝛾 ∙ 𝜉𝑖 ∙ 𝑟𝑖�
𝐿−1

𝑖=0𝐴𝑙𝑙 𝑝𝑒𝑒𝑟𝑚𝑢𝑡𝑎𝑎𝑡𝑖𝑜𝑛𝑠
 𝑜𝑓𝑓 𝜉�⃗ ⋆ 𝑒𝑒𝑙𝑒𝑒𝑚𝑒𝑒𝑛𝑡𝑠

. 

   

 
The likelihood ratio between hypotheses ℋ2𝐿 = 𝐻2𝐿 and ℋ𝐿 = 𝐻𝐿  will be 
considered: 

𝜆(𝑟|ℋ = 𝐻2𝐿) = �
𝑒−〈𝑟,𝑟〉

(𝜋𝑁0)2𝐿�

1
2

∙ � 𝑒−𝛾|2𝐿|2 cosh��2𝛾 ∙ 2𝐿 ∙ 𝑟𝑖�
2𝐿−1

𝑘=0

 

and 

𝜆(𝑟|ℋ = 𝐻𝐿) = �
𝑒−〈𝑟,𝑟〉

(𝜋𝑁0)𝐿�

1
2

∙�𝑒−𝛾|𝐿|2 cosh��2𝛾 ∙ 𝐿 ∙ 𝑟𝑖�
𝐿−1

𝑘=0

 

For each sample vector 𝑟2𝐿×1 in the ℋ2𝐿 there are two sample vectors 𝑟𝐿×1 in ℋ𝐿 .  
These two vectors are statistically independent, so the likelihood in the 
denominator is multiplied. 

Λ(𝑟0, 𝑟1, … , 𝑟2𝐿) =
𝜆(𝑟0, 𝑟1, … , 𝑟2𝐿|ℋ = 𝐻2𝐿)

𝜆(𝑟0, 𝑟1, … , 𝑟𝐿−1|ℋ = 𝐻𝐿) ∙ 𝜆(𝑟𝐿 , 𝑟𝐿+1, … , 𝑟2𝐿|ℋ = 𝐻𝐿) 

 

Substituding in the previous equation gives: 

Λ(𝑟0, 𝑟1, … , 𝑟2𝐿)

=
� 𝑒𝑒−〈𝑟��⃗ ,𝑟��⃗ 〉

(𝜋𝑁0)2𝐿�
1
2
∙ ∑ 𝑒−𝛾|2𝐿|2 cosh��2𝛾 ∙ 2𝐿 ∙ 𝑟𝑖�𝐿−1

𝑘=0

�𝑒𝑒
−〈𝑟��⃗ 1,𝑟��⃗ 1〉

(𝜋𝑁0)𝐿 �
1
2
∙ ∑ 𝑒−𝛾|𝐿|2 cosh��2𝛾 ∙ 𝐿 ∙ 𝑟𝑖�𝐿−1

𝑘=0 ∙ �𝑒𝑒
−〈𝑟��⃗ 2,𝑟��⃗ 2〉

(𝜋𝑁0)𝐿 �
1
2
∙ ∑ 𝑒−𝛾|𝐿|2 cosh��2𝛾 ∙ 𝐿 ∙ 𝑟𝑖+𝐿�𝐿−1

𝑘=0
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Note that 〈𝑟1, 𝑟1〉 and 〈𝑟2, 𝑟2〉 is the dot product between the first and second sample 
of ℋ𝐿 . The sum of both dot products equals the dot product in the numerator. 

〈𝑟1, 𝑟1〉 + 〈𝑟2, 𝑟2〉 = 〈𝑟, 𝑟〉 

So, the product between 

�
𝑒−〈𝑟1,𝑟1〉

(𝜋𝑁0)𝐿�

1
2

�
𝑒−〈𝑟2,𝑟2〉

(𝜋𝑁0)𝐿�

1
2

= �
𝑒−〈𝑟,𝑟〉

(𝜋𝑁0)2𝐿�

1
2

 

cancels with the same term in the numerator. 

The final form is given by: 

𝜆(𝑟|ℋ2𝐿)
𝜆(𝑟|ℋ𝐿) =

∑ cosh (�2𝛾 ∙ 2𝐿 ∙ 𝑅𝑒{𝑟𝑘})2𝐿−1
𝑘=0

∑ cosh (�2𝛾 ∙ 𝐿 ∙ 𝑅𝑒{𝑟𝑘})𝐿−1
𝑘=0 ∙ ∑  cosh (�2𝛾 ∙ 𝐿 ∙ 𝑅𝑒{𝑟𝑘})2𝐿−1

𝑘=𝐿+1
 

 

Using the double angle formulas for cosh functions helps reducing the amount of 
calculations by reusing the terms in the denominator. 

𝜆(𝑟|ℋ2𝐿)
𝜆(𝑟|ℋ𝐿) =

∑ (2𝑑𝑘2 − 1)2𝐿
𝑘=0

∑ 𝑑𝑘𝐿
𝑘=0 ∙ ∑ 𝑑𝑘2𝐿

𝑘=𝐿+1
 

 

𝑑𝑘 =  cosh (�2𝛾 ∙ 𝐿 ∙ 𝑅𝑒{𝑟𝑘}) 

 

Note: It was discovered that the likelihood ratio is only valid when the energy of the 
signal is assumed to be known.  A more correct expression will consider the effect of 
the dependency of the hypothesis on the energy of the CDMA signal.  In other words, 
𝑑𝑘 is a function of ℋ. 
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List of Acronyms 

ALRT Average Likelihood Ratio Test 

CDMA Code Division Multiple Access 

LRT Likelihood Ratio Test 

MPI Multiple Programming Interface 

Re{} Real part 

TSC, 𝜏 Total Square Correlation 

⨂ Kronecker product 

𝑐∗,𝑖 Column vector 

𝛾 Chip Signal to Noise Ratio 

𝛾𝑠 Symbol Signal to Noise Ratio 
Λ2L(𝑟) Likelihood ratio (Hypothesis 2L versus L) 

𝐸 Average energy per symbol 

𝜆(𝑟|ℋ) Likelihood function 

𝜆�𝑟|ℋ,𝐶, 𝑏�⃗ � Conditional likelihood function 

𝐶 Spreading matrix 

𝐶⋆ TSC optimal spreading matrix 

𝑏�⃗  Information vector 

𝛼𝐿,𝑈,𝑎𝑎�⃗  Coefficients of the CDMA likelihood function 

𝛼⋆ Non-vanishing alpha coefficients 

�⃗�⋆ Feature vector for CDMA detection 
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